Merge pull request #286 from VectorCamp/bugfix/cppcheck-fix-wrong-casts

Fix remaining C style casts and suppressions
This commit is contained in:
Konstantinos Margaritis 2024-05-20 15:17:01 +03:00 committed by GitHub
commit cd39f71e80
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
20 changed files with 174 additions and 145 deletions

View File

@ -106,7 +106,8 @@ struct FiveTuple {
dstAddr = iphdr->ip_dst.s_addr; dstAddr = iphdr->ip_dst.s_addr;
// UDP/TCP ports // UDP/TCP ports
const struct udphdr *uh = reinterpret_cast<const struct udphdr *>(iphdr) + (iphdr->ip_hl * 4); const char * iphdr_base = reinterpret_cast<const char *>(iphdr);
const struct udphdr *uh = reinterpret_cast<const struct udphdr *>(iphdr_base + (iphdr->ip_hl * 4));
srcPort = uh->uh_sport; srcPort = uh->uh_sport;
dstPort = uh->uh_dport; dstPort = uh->uh_dport;
} }
@ -231,7 +232,7 @@ public:
} }
// Valid TCP or UDP packet // Valid TCP or UDP packet
const struct ip *iphdr = reinterpret_cast<const struct ip *>(pktData) + sizeof(struct ether_header); const struct ip *iphdr = reinterpret_cast<const struct ip *>(pktData + sizeof(struct ether_header));
const char *payload = reinterpret_cast<const char *>(pktData) + offset; const char *payload = reinterpret_cast<const char *>(pktData) + offset;
size_t id = stream_map.insert(std::make_pair(FiveTuple(iphdr), size_t id = stream_map.insert(std::make_pair(FiveTuple(iphdr),
@ -572,7 +573,8 @@ int main(int argc, char **argv) {
*/ */
static bool payloadOffset(const unsigned char *pkt_data, unsigned int *offset, static bool payloadOffset(const unsigned char *pkt_data, unsigned int *offset,
unsigned int *length) { unsigned int *length) {
const ip *iph = reinterpret_cast<const ip *>(pkt_data) + sizeof(ether_header); const ip *iph = reinterpret_cast<const ip *>(pkt_data + sizeof(ether_header));
const char *iph_base = reinterpret_cast<const char *>(iph);
const tcphdr *th = nullptr; const tcphdr *th = nullptr;
// Ignore packets that aren't IPv4 // Ignore packets that aren't IPv4
@ -591,7 +593,7 @@ static bool payloadOffset(const unsigned char *pkt_data, unsigned int *offset,
switch (iph->ip_p) { switch (iph->ip_p) {
case IPPROTO_TCP: case IPPROTO_TCP:
th = reinterpret_cast<const tcphdr *>(iph) + ihlen; th = reinterpret_cast<const tcphdr *>(iph_base + ihlen);
thlen = th->th_off * 4; thlen = th->th_off * 4;
break; break;
case IPPROTO_UDP: case IPPROTO_UDP:

View File

@ -632,11 +632,12 @@ buildCastle(const CastleProto &proto,
if (patchSize[i]) { if (patchSize[i]) {
RepeatInfo *info = reinterpret_cast<RepeatInfo *>(ptr); RepeatInfo *info = reinterpret_cast<RepeatInfo *>(ptr);
u64a *table = reinterpret_cast<u64a *>(ROUNDUP_PTR(info + char *info_base = reinterpret_cast<char *>(info);
u64a *table = reinterpret_cast<u64a *>(ROUNDUP_PTR(info_base +
sizeof(*info), alignof(u64a))); sizeof(*info), alignof(u64a)));
copy(tables.begin() + tableIdx, copy(tables.begin() + tableIdx,
tables.begin() + tableIdx + patchSize[i], table); tables.begin() + tableIdx + patchSize[i], table);
u32 diff = reinterpret_cast<ptrdiff_t>(table) - reinterpret_cast<ptrdiff_t>(info) + u32 diff = reinterpret_cast<char *>(table) - info_base +
sizeof(u64a) * patchSize[i]; sizeof(u64a) * patchSize[i];
info->length = diff; info->length = diff;
length += diff; length += diff;

View File

@ -1077,7 +1077,6 @@ bytecode_ptr<NFA> goughCompile(raw_som_dfa &raw, u8 somPrecision,
return bytecode_ptr<NFA>(nullptr); return bytecode_ptr<NFA>(nullptr);
} }
// cppcheck-suppress cstyleCast
const auto nfa = static_cast<const mcclellan *>(getImplNfa(basic_dfa.get())); const auto nfa = static_cast<const mcclellan *>(getImplNfa(basic_dfa.get()));
u8 alphaShift = nfa->alphaShift; u8 alphaShift = nfa->alphaShift;
u32 edge_count = (1U << alphaShift) * raw.states.size(); u32 edge_count = (1U << alphaShift) * raw.states.size();
@ -1134,7 +1133,6 @@ bytecode_ptr<NFA> goughCompile(raw_som_dfa &raw, u8 somPrecision,
gough_dfa->streamStateSize = base_state_size + slot_count * somPrecision; gough_dfa->streamStateSize = base_state_size + slot_count * somPrecision;
gough_dfa->scratchStateSize = (u32)(16 + scratch_slot_count * sizeof(u64a)); gough_dfa->scratchStateSize = (u32)(16 + scratch_slot_count * sizeof(u64a));
// cppcheck-suppress cstyleCast
auto *m = reinterpret_cast<mcclellan *>(getMutableImplNfa(gough_dfa.get())); auto *m = reinterpret_cast<mcclellan *>(getMutableImplNfa(gough_dfa.get()));
m->haig_offset = haig_offset; m->haig_offset = haig_offset;

View File

@ -269,7 +269,7 @@ void maskClear(Mask &m) {
template<class Mask> template<class Mask>
u8 *maskGetByte(Mask &m, u32 bit) { u8 *maskGetByte(Mask &m, u32 bit) {
assert(bit < sizeof(m)*8); assert(bit < sizeof(m)*8);
u8 *m8 = (u8 *)&m; u8 *m8 = reinterpret_cast<u8 *>(&m);
return m8 + bit/8; return m8 + bit/8;
} }
@ -290,7 +290,7 @@ void maskSetBits(Mask &m, const NFAStateSet &bits) {
template<class Mask> template<class Mask>
bool isMaskZero(Mask &m) { bool isMaskZero(Mask &m) {
const u8 *m8 = (u8 *)&m; const u8 *m8 = reinterpret_cast<u8 *>(&m);
for (u32 i = 0; i < sizeof(m); i++) { for (u32 i = 0; i < sizeof(m); i++) {
if (m8[i]) { if (m8[i]) {
return false; return false;
@ -303,7 +303,7 @@ bool isMaskZero(Mask &m) {
template<class Mask> template<class Mask>
void maskSetByte(Mask &m, const unsigned int idx, const char val) { void maskSetByte(Mask &m, const unsigned int idx, const char val) {
assert(idx < sizeof(m)); assert(idx < sizeof(m));
char *m8 = (char *)&m; char *m8 = reinterpret_cast<char *>(&m);
char &byte = m8[idx]; char &byte = m8[idx];
byte = val; byte = val;
} }
@ -1702,7 +1702,7 @@ struct Factory {
static static
void allocState(NFA *nfa, u32 repeatscratchStateSize, void allocState(NFA *nfa, u32 repeatscratchStateSize,
u32 repeatStreamState) { u32 repeatStreamState) {
const implNFA_t *limex = (implNFA_t *)getMutableImplNfa(nfa); const implNFA_t *limex = reinterpret_cast<implNFA_t *>(getMutableImplNfa(nfa));
// LimEx NFAs now store the following in state: // LimEx NFAs now store the following in state:
// 1. state bitvector (always present) // 1. state bitvector (always present)
@ -1768,7 +1768,7 @@ struct Factory {
u32 tableOffset, tugMaskOffset; u32 tableOffset, tugMaskOffset;
size_t len = repeatAllocSize(br, &tableOffset, &tugMaskOffset); size_t len = repeatAllocSize(br, &tableOffset, &tugMaskOffset);
auto info = make_zeroed_bytecode_ptr<NFARepeatInfo>(len); auto info = make_zeroed_bytecode_ptr<NFARepeatInfo>(len);
char *info_ptr = (char *)info.get(); char *info_ptr = reinterpret_cast<char *>(info.get());
// Collect state space info. // Collect state space info.
RepeatStateInfo rsi(br.type, br.repeatMin, br.repeatMax, br.minPeriod); RepeatStateInfo rsi(br.type, br.repeatMin, br.repeatMax, br.minPeriod);
@ -1783,8 +1783,7 @@ struct Factory {
info->tugMaskOffset = tugMaskOffset; info->tugMaskOffset = tugMaskOffset;
// Fill the RepeatInfo structure. // Fill the RepeatInfo structure.
RepeatInfo *repeat = RepeatInfo *repeat = reinterpret_cast<RepeatInfo *>(info_ptr + sizeof(NFARepeatInfo));
(RepeatInfo *)(info_ptr + sizeof(NFARepeatInfo));
repeat->type = br.type; repeat->type = br.type;
repeat->repeatMin = depth_to_u32(br.repeatMin); repeat->repeatMin = depth_to_u32(br.repeatMin);
repeat->repeatMax = depth_to_u32(br.repeatMax); repeat->repeatMax = depth_to_u32(br.repeatMax);
@ -1810,7 +1809,7 @@ struct Factory {
} }
// Fill the tug mask. // Fill the tug mask.
tableRow_t *tugMask = (tableRow_t *)(info_ptr + tugMaskOffset); tableRow_t *tugMask = reinterpret_cast<tableRow_t *>(info_ptr + tugMaskOffset);
for (auto v : br.tug_triggers) { for (auto v : br.tug_triggers) {
u32 state_id = args.state_ids.at(v); u32 state_id = args.state_ids.at(v);
assert(state_id != NO_STATE); assert(state_id != NO_STATE);
@ -1931,7 +1930,7 @@ struct Factory {
const u32 reportListOffset) { const u32 reportListOffset) {
DEBUG_PRINTF("exceptionsOffset=%u\n", exceptionsOffset); DEBUG_PRINTF("exceptionsOffset=%u\n", exceptionsOffset);
exception_t *etable = (exception_t *)((char *)limex + exceptionsOffset); exception_t *etable = reinterpret_cast<exception_t *>(reinterpret_cast<char *>(limex) + exceptionsOffset);
assert(ISALIGNED(etable)); assert(ISALIGNED(etable));
map<u32, ExceptionProto> exception_by_state; map<u32, ExceptionProto> exception_by_state;
@ -1979,10 +1978,10 @@ struct Factory {
limex->exceptionCount = ecount; limex->exceptionCount = ecount;
if (args.num_states > 64 && args.cc.target_info.has_avx512vbmi()) { if (args.num_states > 64 && args.cc.target_info.has_avx512vbmi()) {
const u8 *exceptionMask = (const u8 *)(&limex->exceptionMask); const u8 *exceptionMask = reinterpret_cast<const u8 *>(&limex->exceptionMask);
u8 *shufMask = (u8 *)&limex->exceptionShufMask; u8 *shufMask = reinterpret_cast<u8 *>(&limex->exceptionShufMask);
u8 *bitMask = (u8 *)&limex->exceptionBitMask; u8 *bitMask = reinterpret_cast<u8 *>(&limex->exceptionBitMask);
u8 *andMask = (u8 *)&limex->exceptionAndMask; u8 *andMask = reinterpret_cast<u8 *>(&limex->exceptionAndMask);
u32 tot_cnt = 0; u32 tot_cnt = 0;
u32 pos = 0; u32 pos = 0;
@ -2042,7 +2041,7 @@ struct Factory {
copy(reachMap.begin(), reachMap.end(), &limex->reachMap[0]); copy(reachMap.begin(), reachMap.end(), &limex->reachMap[0]);
// Reach table is right after the LimEx structure. // Reach table is right after the LimEx structure.
tableRow_t *reachMask = (tableRow_t *)((char *)limex + reachOffset); tableRow_t *reachMask = reinterpret_cast<tableRow_t *>(reinterpret_cast<char *>(limex) + reachOffset);
assert(ISALIGNED(reachMask)); assert(ISALIGNED(reachMask));
for (size_t i = 0, end = reach.size(); i < end; i++) { for (size_t i = 0, end = reach.size(); i < end; i++) {
maskSetBits(reachMask[i], reach[i]); maskSetBits(reachMask[i], reach[i]);
@ -2056,7 +2055,7 @@ struct Factory {
DEBUG_PRINTF("topsOffset=%u\n", topsOffset); DEBUG_PRINTF("topsOffset=%u\n", topsOffset);
limex->topOffset = topsOffset; limex->topOffset = topsOffset;
tableRow_t *topMasks = (tableRow_t *)((char *)limex + topsOffset); tableRow_t *topMasks = reinterpret_cast<tableRow_t *>(reinterpret_cast<char *>(limex) + topsOffset);
assert(ISALIGNED(topMasks)); assert(ISALIGNED(topMasks));
for (size_t i = 0, end = tops.size(); i < end; i++) { for (size_t i = 0, end = tops.size(); i < end; i++) {
@ -2068,8 +2067,8 @@ struct Factory {
static static
void writeAccelSsse3Masks(const NFAStateSet &accelMask, implNFA_t *limex) { void writeAccelSsse3Masks(const NFAStateSet &accelMask, implNFA_t *limex) {
char *perm_base = (char *)&limex->accelPermute; char *perm_base = reinterpret_cast<char *>(&limex->accelPermute);
char *comp_base = (char *)&limex->accelCompare; char *comp_base = reinterpret_cast<char *>(&limex->accelCompare);
u32 num = 0; // index in accel table. u32 num = 0; // index in accel table.
for (size_t i = accelMask.find_first(); i != accelMask.npos; for (size_t i = accelMask.find_first(); i != accelMask.npos;
@ -2080,8 +2079,8 @@ struct Factory {
// PSHUFB permute and compare masks // PSHUFB permute and compare masks
size_t mask_idx = sizeof(u_128) * (state_id / 128U); size_t mask_idx = sizeof(u_128) * (state_id / 128U);
DEBUG_PRINTF("mask_idx=%zu\n", mask_idx); DEBUG_PRINTF("mask_idx=%zu\n", mask_idx);
u_128 *perm = (u_128 *)(perm_base + mask_idx); u_128 *perm = reinterpret_cast<u_128 *>(perm_base + mask_idx);
u_128 *comp = (u_128 *)(comp_base + mask_idx); u_128 *comp = reinterpret_cast<u_128 *>(comp_base + mask_idx);
maskSetByte(*perm, num, ((state_id % 128U) / 8U)); maskSetByte(*perm, num, ((state_id % 128U) / 8U));
maskSetByte(*comp, num, ~(1U << (state_id % 8U))); maskSetByte(*comp, num, ~(1U << (state_id % 8U)));
} }
@ -2099,11 +2098,11 @@ struct Factory {
// Write accel lookup table. // Write accel lookup table.
limex->accelTableOffset = accelTableOffset; limex->accelTableOffset = accelTableOffset;
copy(accelTable.begin(), accelTable.end(), copy(accelTable.begin(), accelTable.end(),
(u8 *)((char *)limex + accelTableOffset)); reinterpret_cast<u8 *>(reinterpret_cast<char *>(limex) + accelTableOffset));
// Write accel aux structures. // Write accel aux structures.
limex->accelAuxOffset = accelAuxOffset; limex->accelAuxOffset = accelAuxOffset;
AccelAux *auxTable = (AccelAux *)((char *)limex + accelAuxOffset); AccelAux *auxTable = reinterpret_cast<AccelAux *>(reinterpret_cast<char *>(limex) + accelAuxOffset);
assert(ISALIGNED(auxTable)); assert(ISALIGNED(auxTable));
copy(accelAux.begin(), accelAux.end(), auxTable); copy(accelAux.begin(), accelAux.end(), auxTable);
@ -2133,7 +2132,7 @@ struct Factory {
const vector<NFAStateSet> &squash, implNFA_t *limex, const vector<NFAStateSet> &squash, implNFA_t *limex,
const u32 acceptsOffset, const u32 acceptsEodOffset, const u32 acceptsOffset, const u32 acceptsEodOffset,
const u32 squashOffset, const u32 reportListOffset) { const u32 squashOffset, const u32 reportListOffset) {
char *limex_base = (char *)limex; char *limex_base = reinterpret_cast<char *>(limex);
DEBUG_PRINTF("acceptsOffset=%u, acceptsEodOffset=%u, squashOffset=%u\n", DEBUG_PRINTF("acceptsOffset=%u, acceptsEodOffset=%u, squashOffset=%u\n",
acceptsOffset, acceptsEodOffset, squashOffset); acceptsOffset, acceptsEodOffset, squashOffset);
@ -2156,7 +2155,7 @@ struct Factory {
limex->acceptOffset = acceptsOffset; limex->acceptOffset = acceptsOffset;
limex->acceptCount = verify_u32(accepts.size()); limex->acceptCount = verify_u32(accepts.size());
DEBUG_PRINTF("NFA has %zu accepts\n", accepts.size()); DEBUG_PRINTF("NFA has %zu accepts\n", accepts.size());
NFAAccept *acceptsTable = (NFAAccept *)(limex_base + acceptsOffset); NFAAccept *acceptsTable = reinterpret_cast<NFAAccept *>(limex_base + acceptsOffset);
assert(ISALIGNED(acceptsTable)); assert(ISALIGNED(acceptsTable));
transform(accepts.begin(), accepts.end(), acceptsTable, transform(accepts.begin(), accepts.end(), acceptsTable,
transform_offset_fn); transform_offset_fn);
@ -2165,7 +2164,7 @@ struct Factory {
limex->acceptEodOffset = acceptsEodOffset; limex->acceptEodOffset = acceptsEodOffset;
limex->acceptEodCount = verify_u32(acceptsEod.size()); limex->acceptEodCount = verify_u32(acceptsEod.size());
DEBUG_PRINTF("NFA has %zu EOD accepts\n", acceptsEod.size()); DEBUG_PRINTF("NFA has %zu EOD accepts\n", acceptsEod.size());
NFAAccept *acceptsEodTable = (NFAAccept *)(limex_base + acceptsEodOffset); NFAAccept *acceptsEodTable = reinterpret_cast<NFAAccept *>(limex_base + acceptsEodOffset);
assert(ISALIGNED(acceptsEodTable)); assert(ISALIGNED(acceptsEodTable));
transform(acceptsEod.begin(), acceptsEod.end(), acceptsEodTable, transform(acceptsEod.begin(), acceptsEod.end(), acceptsEodTable,
transform_offset_fn); transform_offset_fn);
@ -2174,7 +2173,7 @@ struct Factory {
limex->squashCount = verify_u32(squash.size()); limex->squashCount = verify_u32(squash.size());
limex->squashOffset = squashOffset; limex->squashOffset = squashOffset;
DEBUG_PRINTF("NFA has %zu report squash masks\n", squash.size()); DEBUG_PRINTF("NFA has %zu report squash masks\n", squash.size());
tableRow_t *mask = (tableRow_t *)(limex_base + squashOffset); tableRow_t *mask = reinterpret_cast<tableRow_t *>(limex_base + squashOffset);
assert(ISALIGNED(mask)); assert(ISALIGNED(mask));
for (size_t i = 0, end = squash.size(); i < end; i++) { for (size_t i = 0, end = squash.size(); i < end; i++) {
maskSetBits(mask[i], squash[i]); maskSetBits(mask[i], squash[i]);
@ -2196,13 +2195,13 @@ struct Factory {
for (u32 i = 0; i < num_repeats; i++) { for (u32 i = 0; i < num_repeats; i++) {
repeatOffsets[i] = offset; repeatOffsets[i] = offset;
assert(repeats[i]); assert(repeats[i]);
memcpy((char *)limex + offset, repeats[i].get(), repeats[i].size()); memcpy(reinterpret_cast<char *>(limex) + offset, repeats[i].get(), repeats[i].size());
offset += repeats[i].size(); offset += repeats[i].size();
} }
// Write repeat offset lookup table. // Write repeat offset lookup table.
assert(ISALIGNED_N((char *)limex + repeatOffsetsOffset, alignof(u32))); assert(ISALIGNED_N(reinterpret_cast<char *>(limex) + repeatOffsetsOffset, alignof(u32)));
copy_bytes((char *)limex + repeatOffsetsOffset, repeatOffsets); copy_bytes(reinterpret_cast<char *>(limex) + repeatOffsetsOffset, repeatOffsets);
limex->repeatOffset = repeatOffsetsOffset; limex->repeatOffset = repeatOffsetsOffset;
limex->repeatCount = num_repeats; limex->repeatCount = num_repeats;
@ -2212,9 +2211,9 @@ struct Factory {
void writeReportList(const vector<ReportID> &reports, implNFA_t *limex, void writeReportList(const vector<ReportID> &reports, implNFA_t *limex,
const u32 reportListOffset) { const u32 reportListOffset) {
DEBUG_PRINTF("reportListOffset=%u\n", reportListOffset); DEBUG_PRINTF("reportListOffset=%u\n", reportListOffset);
assert(ISALIGNED_N((char *)limex + reportListOffset, assert(ISALIGNED_N(reinterpret_cast<char *>(limex) + reportListOffset,
alignof(ReportID))); alignof(ReportID)));
copy_bytes((char *)limex + reportListOffset, reports); copy_bytes(reinterpret_cast<char *>(limex) + reportListOffset, reports);
} }
static static
@ -2323,7 +2322,7 @@ struct Factory {
auto nfa = make_zeroed_bytecode_ptr<NFA>(nfaSize); auto nfa = make_zeroed_bytecode_ptr<NFA>(nfaSize);
assert(nfa); // otherwise we would have thrown std::bad_alloc assert(nfa); // otherwise we would have thrown std::bad_alloc
implNFA_t *limex = (implNFA_t *)getMutableImplNfa(nfa.get()); implNFA_t *limex = reinterpret_cast<implNFA_t *>(getMutableImplNfa(nfa.get()));
assert(ISALIGNED(limex)); assert(ISALIGNED(limex));
writeReachMapping(reach, reachMap, limex, reachOffset); writeReachMapping(reach, reachMap, limex, reachOffset);

View File

@ -106,9 +106,10 @@ static really_inline
const char *findShermanState(UNUSED const struct mcclellan *m, const char *findShermanState(UNUSED const struct mcclellan *m,
const char *sherman_base_offset, u32 sherman_base, const char *sherman_base_offset, u32 sherman_base,
u32 s) { u32 s) {
const char *rv const char *rv = sherman_base_offset + SHERMAN_FIXED_SIZE * (s - sherman_base);
= sherman_base_offset + SHERMAN_FIXED_SIZE * (s - sherman_base); // cppcheck-suppress cstyleCast
assert(rv < (const char *)m + m->length - sizeof(struct NFA)); assert(rv < (const char *)m + m->length - sizeof(struct NFA));
// cppcheck-suppress cstyleCast
UNUSED u8 type = *(const u8 *)(rv + SHERMAN_TYPE_OFFSET); UNUSED u8 type = *(const u8 *)(rv + SHERMAN_TYPE_OFFSET);
assert(type == SHERMAN_STATE); assert(type == SHERMAN_STATE);
return rv; return rv;
@ -123,13 +124,15 @@ char *findMutableShermanState(char *sherman_base_offset, u16 sherman_base,
static really_inline static really_inline
const char *findWideEntry8(UNUSED const struct mcclellan *m, const char *findWideEntry8(UNUSED const struct mcclellan *m,
const char *wide_base, u32 wide_limit, u32 s) { const char *wide_base, u32 wide_limit, u32 s) {
// cppcheck-suppress cstyleCast
UNUSED u8 type = *(const u8 *)wide_base; UNUSED u8 type = *(const u8 *)wide_base;
assert(type == WIDE_STATE); assert(type == WIDE_STATE);
const u32 entry_offset // cppcheck-suppress cstyleCast
= *(const u32 *)(wide_base const u32 entry_offset = *(const u32 *)(wide_base
+ WIDE_ENTRY_OFFSET8((s - wide_limit) * sizeof(u32))); + WIDE_ENTRY_OFFSET8((s - wide_limit) * sizeof(u32)));
const char *rv = wide_base + entry_offset; const char *rv = wide_base + entry_offset;
// cppcheck-suppress cstyleCast
assert(rv < (const char *)m + m->length - sizeof(struct NFA)); assert(rv < (const char *)m + m->length - sizeof(struct NFA));
return rv; return rv;
} }
@ -137,21 +140,23 @@ const char *findWideEntry8(UNUSED const struct mcclellan *m,
static really_inline static really_inline
const char *findWideEntry16(UNUSED const struct mcclellan *m, const char *findWideEntry16(UNUSED const struct mcclellan *m,
const char *wide_base, u32 wide_limit, u32 s) { const char *wide_base, u32 wide_limit, u32 s) {
// cppcheck-suppress cstyleCast
UNUSED u8 type = *(const u8 *)wide_base; UNUSED u8 type = *(const u8 *)wide_base;
assert(type == WIDE_STATE); assert(type == WIDE_STATE);
const u32 entry_offset // cppcheck-suppress cstyleCast
= *(const u32 *)(wide_base const u32 entry_offset = *(const u32 *)(wide_base
+ WIDE_ENTRY_OFFSET16((s - wide_limit) * sizeof(u32))); + WIDE_ENTRY_OFFSET16((s - wide_limit) * sizeof(u32)));
const char *rv = wide_base + entry_offset; const char *rv = wide_base + entry_offset;
// cppcheck-suppress cstyleCast
assert(rv < (const char *)m + m->length - sizeof(struct NFA)); assert(rv < (const char *)m + m->length - sizeof(struct NFA));
return rv; return rv;
} }
static really_inline static really_inline
char *findMutableWideEntry16(char *wide_base, u32 wide_limit, u32 s) { char *findMutableWideEntry16(char *wide_base, u32 wide_limit, u32 s) {
u32 entry_offset // cppcheck-suppress cstyleCast
= *(const u32 *)(wide_base u32 entry_offset = *(const u32 *)(wide_base
+ WIDE_ENTRY_OFFSET16((s - wide_limit) * sizeof(u32))); + WIDE_ENTRY_OFFSET16((s - wide_limit) * sizeof(u32)));
return wide_base + entry_offset; return wide_base + entry_offset;

View File

@ -176,11 +176,11 @@ static
mstate_aux *getAux(NFA *n, dstate_id_t i) { mstate_aux *getAux(NFA *n, dstate_id_t i) {
assert(isMcClellanType(n->type)); assert(isMcClellanType(n->type));
const mcclellan *m = (mcclellan *)getMutableImplNfa(n); const mcclellan *m = reinterpret_cast<const mcclellan *>(getImplNfa(n));
mstate_aux *aux_base = (mstate_aux *)((char *)n + m->aux_offset); mstate_aux *aux_base = reinterpret_cast<mstate_aux *>(reinterpret_cast<u8 *>(n) + m->aux_offset);
mstate_aux *aux = aux_base + i; mstate_aux *aux = aux_base + i;
assert((const char *)aux < (const char *)n + m->length); assert(reinterpret_cast<const char *>(aux) < reinterpret_cast<const char *>(n) + m->length);
return aux; return aux;
} }
@ -190,7 +190,7 @@ void markEdges(NFA *n, u16 *succ_table, const dfa_info &info) {
assert(n->type == MCCLELLAN_NFA_16); assert(n->type == MCCLELLAN_NFA_16);
u8 alphaShift = info.getAlphaShift(); u8 alphaShift = info.getAlphaShift();
u16 alphaSize = info.impl_alpha_size; u16 alphaSize = info.impl_alpha_size;
mcclellan *m = (mcclellan *)getMutableImplNfa(n); mcclellan *m = reinterpret_cast<mcclellan *>(getMutableImplNfa(n));
/* handle the normal states */ /* handle the normal states */
for (u32 i = 0; i < m->sherman_limit; i++) { for (u32 i = 0; i < m->sherman_limit; i++) {
@ -215,17 +215,17 @@ void markEdges(NFA *n, u16 *succ_table, const dfa_info &info) {
} }
/* handle the sherman states */ /* handle the sherman states */
char *sherman_base_offset = (char *)n + m->sherman_offset; char *sherman_base_offset = reinterpret_cast<char *>(n) + m->sherman_offset;
u16 sherman_ceil = m->has_wide == 1 ? m->wide_limit : m->state_count; u16 sherman_ceil = m->has_wide == 1 ? m->wide_limit : m->state_count;
for (u16 j = m->sherman_limit; j < sherman_ceil; j++) { for (u16 j = m->sherman_limit; j < sherman_ceil; j++) {
char *sherman_cur char *sherman_cur
= findMutableShermanState(sherman_base_offset, m->sherman_limit, j); = findMutableShermanState(sherman_base_offset, m->sherman_limit, j);
assert(*(sherman_cur + SHERMAN_TYPE_OFFSET) == SHERMAN_STATE); assert(*(sherman_cur + SHERMAN_TYPE_OFFSET) == SHERMAN_STATE);
u8 len = *(u8 *)(sherman_cur + SHERMAN_LEN_OFFSET); u8 len = *(reinterpret_cast<u8 *>(sherman_cur + SHERMAN_LEN_OFFSET));
u16 *succs = (u16 *)(sherman_cur + SHERMAN_STATES_OFFSET(len)); u16 *succs = reinterpret_cast<u16 *>(sherman_cur + SHERMAN_STATES_OFFSET(len));
for (u8 i = 0; i < len; i++) { for (u8 i = 0; i < len; i++) {
u16 succ_i = unaligned_load_u16((u8 *)&succs[i]); u16 succ_i = unaligned_load_u16(reinterpret_cast<u8 *>(&succs[i]));
// wide state has no aux structure. // wide state has no aux structure.
if (m->has_wide && succ_i >= m->wide_limit) { if (m->has_wide && succ_i >= m->wide_limit) {
continue; continue;
@ -241,25 +241,25 @@ void markEdges(NFA *n, u16 *succ_table, const dfa_info &info) {
succ_i |= ACCEL_FLAG; succ_i |= ACCEL_FLAG;
} }
unaligned_store_u16((u8 *)&succs[i], succ_i); unaligned_store_u16(reinterpret_cast<u8 *>(&succs[i]), succ_i);
} }
} }
/* handle the wide states */ /* handle the wide states */
if (m->has_wide) { if (m->has_wide) {
u32 wide_limit = m->wide_limit; u32 wide_limit = m->wide_limit;
char *wide_base = (char *)n + m->wide_offset; char *wide_base = reinterpret_cast<char *>(n) + m->wide_offset;
assert(*wide_base == WIDE_STATE); assert(*wide_base == WIDE_STATE);
u16 wide_number = verify_u16(info.wide_symbol_chain.size()); u16 wide_number = verify_u16(info.wide_symbol_chain.size());
// traverse over wide head states. // traverse over wide head states.
for (u16 j = wide_limit; j < wide_limit + wide_number; j++) { for (u16 j = wide_limit; j < wide_limit + wide_number; j++) {
char *wide_cur char *wide_cur
= findMutableWideEntry16(wide_base, wide_limit, j); = findMutableWideEntry16(wide_base, wide_limit, j);
u16 width = *(const u16 *)(wide_cur + WIDE_WIDTH_OFFSET); u16 width = *(reinterpret_cast<const u16 *>(wide_cur + WIDE_WIDTH_OFFSET));
u16 *trans = (u16 *)(wide_cur + WIDE_TRANSITION_OFFSET16(width)); u16 *trans = reinterpret_cast<u16 *>(wide_cur + WIDE_TRANSITION_OFFSET16(width));
// check successful transition // check successful transition
u16 next = unaligned_load_u16((u8 *)trans); u16 next = unaligned_load_u16(reinterpret_cast<u8 *>(trans));
if (next < wide_limit) { if (next < wide_limit) {
const mstate_aux *aux = getAux(n, next); const mstate_aux *aux = getAux(n, next);
if (aux->accept) { if (aux->accept) {
@ -268,13 +268,13 @@ void markEdges(NFA *n, u16 *succ_table, const dfa_info &info) {
if (aux->accel_offset) { if (aux->accel_offset) {
next |= ACCEL_FLAG; next |= ACCEL_FLAG;
} }
unaligned_store_u16((u8 *)trans, next); unaligned_store_u16(reinterpret_cast<u8 *>(trans), next);
} }
trans++; trans++;
// check failure transition // check failure transition
for (symbol_t k = 0; k < alphaSize; k++) { for (symbol_t k = 0; k < alphaSize; k++) {
u16 next_k = unaligned_load_u16((u8 *)&trans[k]); u16 next_k = unaligned_load_u16(reinterpret_cast<u8 *>(&trans[k]));
if (next_k >= wide_limit) { if (next_k >= wide_limit) {
continue; continue;
} }
@ -285,7 +285,7 @@ void markEdges(NFA *n, u16 *succ_table, const dfa_info &info) {
if (aux_k->accel_offset) { if (aux_k->accel_offset) {
next_k |= ACCEL_FLAG; next_k |= ACCEL_FLAG;
} }
unaligned_store_u16((u8 *)&trans[k], next_k); unaligned_store_u16(reinterpret_cast<u8 *>(&trans[k]), next_k);
} }
} }
} }
@ -321,7 +321,7 @@ void populateBasicInfo(size_t state_size, const dfa_info &info,
nfa->type = MCCLELLAN_NFA_16; nfa->type = MCCLELLAN_NFA_16;
} }
mcclellan *m = (mcclellan *)getMutableImplNfa(nfa); mcclellan *m = reinterpret_cast<mcclellan *>(getMutableImplNfa(nfa));
for (u32 i = 0; i < 256; i++) { for (u32 i = 0; i < 256; i++) {
m->remap[i] = verify_u8(info.alpha_remap[i]); m->remap[i] = verify_u8(info.alpha_remap[i]);
} }
@ -485,7 +485,7 @@ void raw_report_info_impl::fillReportLists(NFA *n, size_t base_offset,
for (const auto &reps : rl) { for (const auto &reps : rl) {
ro.emplace_back(base_offset); ro.emplace_back(base_offset);
report_list *p = (report_list *)((char *)n + base_offset); report_list *p = reinterpret_cast<report_list *>(reinterpret_cast<char *>(n) + base_offset);
u32 i = 0; u32 i = 0;
for (const ReportID report : reps.reports) { for (const ReportID report : reps.reports) {
@ -665,7 +665,7 @@ bytecode_ptr<NFA> mcclellanCompile16(dfa_info &info, const CompileContext &cc,
DEBUG_PRINTF("total_size %zu\n", total_size); DEBUG_PRINTF("total_size %zu\n", total_size);
auto nfa = make_zeroed_bytecode_ptr<NFA>(total_size); auto nfa = make_zeroed_bytecode_ptr<NFA>(total_size);
char *nfa_base = (char *)nfa.get(); char *nfa_base = reinterpret_cast<char *>(nfa.get());
populateBasicInfo(sizeof(u16), info, total_size, aux_offset, accel_offset, populateBasicInfo(sizeof(u16), info, total_size, aux_offset, accel_offset,
accel_escape_info.size(), arb, single, nfa.get()); accel_escape_info.size(), arb, single, nfa.get());
@ -674,9 +674,9 @@ bytecode_ptr<NFA> mcclellanCompile16(dfa_info &info, const CompileContext &cc,
ri->fillReportLists(nfa.get(), aux_offset + aux_size, reportOffsets); ri->fillReportLists(nfa.get(), aux_offset + aux_size, reportOffsets);
u16 *succ_table = (u16 *)(nfa_base + sizeof(NFA) + sizeof(mcclellan)); u16 *succ_table = reinterpret_cast<u16 *>(nfa_base + sizeof(NFA) + sizeof(mcclellan));
mstate_aux *aux = (mstate_aux *)(nfa_base + aux_offset); mstate_aux *aux = reinterpret_cast<mstate_aux *>(nfa_base + aux_offset);
mcclellan *m = (mcclellan *)getMutableImplNfa(nfa.get()); mcclellan *m = reinterpret_cast<mcclellan *>(getMutableImplNfa(nfa.get()));
m->wide_limit = wide_limit; m->wide_limit = wide_limit;
m->wide_offset = wide_offset; m->wide_offset = wide_offset;
@ -710,7 +710,7 @@ bytecode_ptr<NFA> mcclellanCompile16(dfa_info &info, const CompileContext &cc,
assert(accel_offset + sizeof(NFA) <= sherman_offset); assert(accel_offset + sizeof(NFA) <= sherman_offset);
assert(ISALIGNED_N(accel_offset, alignof(union AccelAux))); assert(ISALIGNED_N(accel_offset, alignof(union AccelAux)));
info.strat.buildAccel(i, accel_escape_info.at(i), info.strat.buildAccel(i, accel_escape_info.at(i),
(void *)((char *)m + this_aux->accel_offset)); reinterpret_cast<void *>(reinterpret_cast<char *>(m) + this_aux->accel_offset));
} }
} }
@ -740,17 +740,17 @@ bytecode_ptr<NFA> mcclellanCompile16(dfa_info &info, const CompileContext &cc,
assert(accel_offset + sizeof(NFA) <= sherman_offset); assert(accel_offset + sizeof(NFA) <= sherman_offset);
assert(ISALIGNED_N(accel_offset, alignof(union AccelAux))); assert(ISALIGNED_N(accel_offset, alignof(union AccelAux)));
info.strat.buildAccel(i, accel_escape_info.at(i), info.strat.buildAccel(i, accel_escape_info.at(i),
(void *)((char *)m + this_aux->accel_offset)); reinterpret_cast<void *>(reinterpret_cast<char *>(m) + this_aux->accel_offset));
} }
u8 len = verify_u8(info.impl_alpha_size - info.extra[i].daddytaken); u8 len = verify_u8(info.impl_alpha_size - info.extra[i].daddytaken);
assert(len <= 9); assert(len <= 9);
dstate_id_t d = info.states[i].daddy; dstate_id_t d = info.states[i].daddy;
*(u8 *)(curr_sherman_entry + SHERMAN_TYPE_OFFSET) = SHERMAN_STATE; *(reinterpret_cast<u8 *>(curr_sherman_entry + SHERMAN_TYPE_OFFSET)) = SHERMAN_STATE;
*(u8 *)(curr_sherman_entry + SHERMAN_LEN_OFFSET) = len; *(reinterpret_cast<u8 *>(curr_sherman_entry + SHERMAN_LEN_OFFSET)) = len;
*(u16 *)(curr_sherman_entry + SHERMAN_DADDY_OFFSET) = info.implId(d); *(reinterpret_cast<u16 *>(curr_sherman_entry + SHERMAN_DADDY_OFFSET)) = info.implId(d);
u8 *chars = (u8 *)(curr_sherman_entry + SHERMAN_CHARS_OFFSET); u8 *chars = reinterpret_cast<u8 *>(curr_sherman_entry + SHERMAN_CHARS_OFFSET);
for (u16 s = 0; s < info.impl_alpha_size; s++) { for (u16 s = 0; s < info.impl_alpha_size; s++) {
if (info.states[i].next[s] != info.states[d].next[s]) { if (info.states[i].next[s] != info.states[d].next[s]) {
@ -758,13 +758,13 @@ bytecode_ptr<NFA> mcclellanCompile16(dfa_info &info, const CompileContext &cc,
} }
} }
u16 *states = (u16 *)(curr_sherman_entry + SHERMAN_STATES_OFFSET(len)); u16 *states = reinterpret_cast<u16 *>(curr_sherman_entry + SHERMAN_STATES_OFFSET(len));
for (u16 s = 0; s < info.impl_alpha_size; s++) { for (u16 s = 0; s < info.impl_alpha_size; s++) {
if (info.states[i].next[s] != info.states[d].next[s]) { if (info.states[i].next[s] != info.states[d].next[s]) {
DEBUG_PRINTF("s overrider %hu dad %hu char next %hu\n", DEBUG_PRINTF("s overrider %hu dad %hu char next %hu\n",
fs, info.implId(d), fs, info.implId(d),
info.implId(info.states[i].next[s])); info.implId(info.states[i].next[s]));
unaligned_store_u16((u8 *)states++, unaligned_store_u16(reinterpret_cast<u8 *>(states++),
info.implId(info.states[i].next[s])); info.implId(info.states[i].next[s]));
} }
} }
@ -777,13 +777,13 @@ bytecode_ptr<NFA> mcclellanCompile16(dfa_info &info, const CompileContext &cc,
assert(ISALIGNED_16(wide_base)); assert(ISALIGNED_16(wide_base));
char *wide_top = wide_base; char *wide_top = wide_base;
*(u8 *)(wide_top++) = WIDE_STATE; *(reinterpret_cast<u8 *>(wide_top++)) = WIDE_STATE;
wide_top = ROUNDUP_PTR(wide_top, 2); wide_top = ROUNDUP_PTR(wide_top, 2);
*(u16 *)(wide_top) = wide_number; *(reinterpret_cast<u16 *>(wide_top)) = wide_number;
wide_top += 2; wide_top += 2;
char *curr_wide_entry = wide_top + wide_number * sizeof(u32); char *curr_wide_entry = wide_top + wide_number * sizeof(u32);
u32 *wide_offset_list = (u32 *)wide_top; u32 *wide_offset_list = reinterpret_cast<u32 *>(wide_top);
/* get the order of writing wide states */ /* get the order of writing wide states */
vector<size_t> order(wide_number); vector<size_t> order(wide_number);
@ -798,8 +798,8 @@ bytecode_ptr<NFA> mcclellanCompile16(dfa_info &info, const CompileContext &cc,
const vector<symbol_t> &symbol_chain = info.wide_symbol_chain[i]; const vector<symbol_t> &symbol_chain = info.wide_symbol_chain[i];
u16 width = verify_u16(symbol_chain.size()); u16 width = verify_u16(symbol_chain.size());
*(u16 *)(curr_wide_entry + WIDE_WIDTH_OFFSET) = width; *(reinterpret_cast<u16 *>(curr_wide_entry + WIDE_WIDTH_OFFSET)) = width;
u8 *chars = (u8 *)(curr_wide_entry + WIDE_SYMBOL_OFFSET16); u8 *chars = reinterpret_cast<u8 *>(curr_wide_entry + WIDE_SYMBOL_OFFSET16);
// store wide state symbol chain // store wide state symbol chain
for (size_t j = 0; j < width; j++) { for (size_t j = 0; j < width; j++) {
@ -807,7 +807,7 @@ bytecode_ptr<NFA> mcclellanCompile16(dfa_info &info, const CompileContext &cc,
} }
// store wide state transition table // store wide state transition table
u16 *trans = (u16 *)(curr_wide_entry u16 *trans = reinterpret_cast<u16 *>(curr_wide_entry
+ WIDE_TRANSITION_OFFSET16(width)); + WIDE_TRANSITION_OFFSET16(width));
dstate_id_t tail = state_chain[width - 1]; dstate_id_t tail = state_chain[width - 1];
symbol_t last = symbol_chain[width -1]; symbol_t last = symbol_chain[width -1];
@ -831,7 +831,7 @@ bytecode_ptr<NFA> mcclellanCompile16(dfa_info &info, const CompileContext &cc,
*wide_offset_list++ = verify_u32(curr_wide_entry - wide_base); *wide_offset_list++ = verify_u32(curr_wide_entry - wide_base);
curr_wide_entry = (char *)trans; curr_wide_entry = reinterpret_cast<char *>(trans);
} }
} }
@ -953,9 +953,9 @@ bytecode_ptr<NFA> mcclellanCompile8(dfa_info &info, const CompileContext &cc,
assert(ISALIGNED_N(accel_offset, alignof(union AccelAux))); assert(ISALIGNED_N(accel_offset, alignof(union AccelAux)));
auto nfa = make_zeroed_bytecode_ptr<NFA>(total_size); auto nfa = make_zeroed_bytecode_ptr<NFA>(total_size);
char *nfa_base = (char *)nfa.get(); char *nfa_base = reinterpret_cast<char *>(nfa.get());
mcclellan *m = (mcclellan *)getMutableImplNfa(nfa.get()); mcclellan *m = reinterpret_cast<mcclellan *>(getMutableImplNfa(nfa.get()));
allocateFSN8(info, accel_escape_info, &m->accel_limit_8, allocateFSN8(info, accel_escape_info, &m->accel_limit_8,
&m->accept_limit_8); &m->accept_limit_8);
@ -967,8 +967,8 @@ bytecode_ptr<NFA> mcclellanCompile8(dfa_info &info, const CompileContext &cc,
ri->fillReportLists(nfa.get(), aux_offset + aux_size, reportOffsets); ri->fillReportLists(nfa.get(), aux_offset + aux_size, reportOffsets);
/* copy in the state information */ /* copy in the state information */
u8 *succ_table = (u8 *)(nfa_base + sizeof(NFA) + sizeof(mcclellan)); u8 *succ_table = reinterpret_cast<u8 *>(nfa_base + sizeof(NFA) + sizeof(mcclellan));
mstate_aux *aux = (mstate_aux *)(nfa_base + aux_offset); mstate_aux *aux = reinterpret_cast<mstate_aux *>(nfa_base + aux_offset);
for (size_t i = 0; i < info.size(); i++) { for (size_t i = 0; i < info.size(); i++) {
if (contains(accel_escape_info, i)) { if (contains(accel_escape_info, i)) {
@ -978,7 +978,7 @@ bytecode_ptr<NFA> mcclellanCompile8(dfa_info &info, const CompileContext &cc,
accel_offset += info.strat.accelSize(); accel_offset += info.strat.accelSize();
info.strat.buildAccel(i, accel_escape_info.at(i), info.strat.buildAccel(i, accel_escape_info.at(i),
(void *)((char *)m + aux[j].accel_offset)); reinterpret_cast<void *>(reinterpret_cast<char *>(m) + aux[j].accel_offset));
} }
fillInBasicState8(info, aux, succ_table, reportOffsets, reports, fillInBasicState8(info, aux, succ_table, reportOffsets, reports,
@ -1550,7 +1550,7 @@ u32 mcclellanStartReachSize(const raw_dfa *raw) {
} }
bool has_accel_mcclellan(const NFA *nfa) { bool has_accel_mcclellan(const NFA *nfa) {
const mcclellan *m = (const mcclellan *)getImplNfa(nfa); const mcclellan *m = reinterpret_cast<const mcclellan *>(getImplNfa(nfa));
return m->has_accel; return m->has_accel;
} }

View File

@ -180,25 +180,27 @@ void writeKiloPuff(const map<ClusterKey, vector<raw_puff>>::const_iterator &it,
#ifdef HAVE_SVE2 #ifdef HAVE_SVE2
} else if (reach.count() >= 240) { } else if (reach.count() >= 240) {
kp->type = MPV_VERM16; kp->type = MPV_VERM16;
vermicelli16Build(~reach, (u8 *)&kp->u.verm16.mask); vermicelli16Build(~reach, reinterpret_cast<u8 *>(&kp->u.verm16.mask));
} else if (reach.count() <= 16) { } else if (reach.count() <= 16) {
kp->type = MPV_NVERM16; kp->type = MPV_NVERM16;
vermicelli16Build(reach, (u8 *)&kp->u.verm16.mask); vermicelli16Build(reach, reinterpret_cast<u8 *>(&kp->u.verm16.mask));
#endif // HAVE_SVE2 #endif // HAVE_SVE2
} else if (shuftiBuildMasks(~reach, (u8 *)&kp->u.shuf.mask_lo, } else if (shuftiBuildMasks(~reach,
(u8 *)&kp->u.shuf.mask_hi) != -1) { reinterpret_cast<u8 *>(&kp->u.shuf.mask_lo),
reinterpret_cast<u8 *>(&kp->u.shuf.mask_hi)) != -1) {
kp->type = MPV_SHUFTI; kp->type = MPV_SHUFTI;
} else { } else {
kp->type = MPV_TRUFFLE; kp->type = MPV_TRUFFLE;
truffleBuildMasks(~reach, (u8 *)&kp->u.truffle.mask1, truffleBuildMasks(~reach,
(u8 *)&kp->u.truffle.mask2); reinterpret_cast<u8 *>(&kp->u.truffle.mask1),
reinterpret_cast<u8 *>(&kp->u.truffle.mask2));
} }
kp->count = verify_u32(puffs.size()); kp->count = verify_u32(puffs.size());
kp->counter_offset = counter_offset; kp->counter_offset = counter_offset;
/* start of real puffette array */ /* start of real puffette array */
kp->puffette_offset = verify_u32((char *)*pa - (char *)m); kp->puffette_offset = verify_u32(reinterpret_cast<char *>(*pa) - reinterpret_cast<char *>(m));
for (size_t i = 0; i < puffs.size(); i++) { for (size_t i = 0; i < puffs.size(); i++) {
assert(!it->first.auto_restart || puffs[i].unbounded); assert(!it->first.auto_restart || puffs[i].unbounded);
writePuffette(*pa + i, puffs[i], rm); writePuffette(*pa + i, puffs[i], rm);
@ -355,8 +357,8 @@ bytecode_ptr<NFA> mpvCompile(const vector<raw_puff> &puffs_in,
auto nfa = make_zeroed_bytecode_ptr<NFA>(len); auto nfa = make_zeroed_bytecode_ptr<NFA>(len);
mpv_puffette *pa_base = (mpv_puffette *) char *nfa_base = reinterpret_cast<char *>(nfa.get());
((char *)nfa.get() + sizeof(NFA) + sizeof(mpv) mpv_puffette *pa_base = reinterpret_cast<mpv_puffette *>(nfa_base + sizeof(NFA) + sizeof(mpv)
+ sizeof(mpv_kilopuff) * puff_clusters.size() + sizeof(mpv_kilopuff) * puff_clusters.size()
+ sizeof(mpv_counter_info) * counters.size()); + sizeof(mpv_counter_info) * counters.size());
mpv_puffette *pa = pa_base; mpv_puffette *pa = pa_base;
@ -373,7 +375,7 @@ bytecode_ptr<NFA> mpvCompile(const vector<raw_puff> &puffs_in,
min_repeat = min(min_repeat, puffs.front().repeats); min_repeat = min(min_repeat, puffs.front().repeats);
} }
mpv *m = (mpv *)getMutableImplNfa(nfa.get()); mpv *m = reinterpret_cast<mpv *>(getMutableImplNfa(nfa.get()));
m->kilo_count = verify_u32(puff_clusters.size()); m->kilo_count = verify_u32(puff_clusters.size());
m->counter_count = verify_u32(counters.size()); m->counter_count = verify_u32(counters.size());
m->puffette_count = puffette_count; m->puffette_count = puffette_count;
@ -384,7 +386,7 @@ bytecode_ptr<NFA> mpvCompile(const vector<raw_puff> &puffs_in,
m->top_kilo_begin = verify_u32(triggered_puffs.size()); m->top_kilo_begin = verify_u32(triggered_puffs.size());
m->top_kilo_end = verify_u32(puff_clusters.size()); m->top_kilo_end = verify_u32(puff_clusters.size());
mpv_kilopuff *kp_begin = (mpv_kilopuff *)(m + 1); mpv_kilopuff *kp_begin = reinterpret_cast<mpv_kilopuff *>(m + 1);
mpv_kilopuff *kp = kp_begin; mpv_kilopuff *kp = kp_begin;
for (auto it = puff_clusters.begin(); it != puff_clusters.end(); ++it) { for (auto it = puff_clusters.begin(); it != puff_clusters.end(); ++it) {
writeKiloPuff(it, rm, writeKiloPuff(it, rm,
@ -392,14 +394,14 @@ bytecode_ptr<NFA> mpvCompile(const vector<raw_puff> &puffs_in,
kp, &pa); kp, &pa);
++kp; ++kp;
} }
assert((char *)pa == (char *)nfa.get() + len); assert(reinterpret_cast<char *>(pa) == nfa_base + len);
mpv_counter_info *out_ci = (mpv_counter_info *)kp; mpv_counter_info *out_ci = reinterpret_cast<mpv_counter_info *>(kp);
for (const auto &counter : counters) { for (const auto &counter : counters) {
*out_ci = counter; *out_ci = counter;
++out_ci; ++out_ci;
} }
assert((char *)out_ci == (char *)pa_base); assert(reinterpret_cast<char *>(out_ci) == reinterpret_cast<char *>(pa_base));
writeCoreNfa(nfa.get(), len, min_repeat, max_counter, curr_comp_offset, writeCoreNfa(nfa.get(), len, min_repeat, max_counter, curr_comp_offset,
curr_decomp_offset); curr_decomp_offset);

View File

@ -86,14 +86,14 @@ typedef bool (*nfa_dispatch_fn)(const NFA *nfa);
template<typename T> template<typename T>
static static
bool has_accel_limex(const NFA *nfa) { bool has_accel_limex(const NFA *nfa) {
const T *limex = (const T *)getImplNfa(nfa); const T *limex = reinterpret_cast<const T *>(getImplNfa(nfa));
return limex->accelCount; return limex->accelCount;
} }
template<typename T> template<typename T>
static static
bool has_repeats_limex(const NFA *nfa) { bool has_repeats_limex(const NFA *nfa) {
const T *limex = (const T *)getImplNfa(nfa); const T *limex = reinterpret_cast<const T *>(getImplNfa(nfa));
return limex->repeatCount; return limex->repeatCount;
} }
@ -101,16 +101,16 @@ bool has_repeats_limex(const NFA *nfa) {
template<typename T> template<typename T>
static static
bool has_repeats_other_than_firsts_limex(const NFA *nfa) { bool has_repeats_other_than_firsts_limex(const NFA *nfa) {
const T *limex = (const T *)getImplNfa(nfa); const T *limex = reinterpret_cast<const T *>(getImplNfa(nfa));
const char *ptr = (const char *)limex; const char *ptr = reinterpret_cast<const char *>(limex);
const u32 *repeatOffset = (const u32 *)(ptr + limex->repeatOffset); const u32 *repeatOffset = reinterpret_cast<const u32 *>(ptr + limex->repeatOffset);
for (u32 i = 0; i < limex->repeatCount; i++) { for (u32 i = 0; i < limex->repeatCount; i++) {
u32 offset = repeatOffset[i]; u32 offset = repeatOffset[i];
const NFARepeatInfo *info = (const NFARepeatInfo *)(ptr + offset); const NFARepeatInfo *info = reinterpret_cast<const NFARepeatInfo *>(ptr + offset);
const RepeatInfo *repeat = const RepeatInfo *repeat =
(const RepeatInfo *)((const char *)info + sizeof(*info)); reinterpret_cast<const RepeatInfo *>(reinterpret_cast<const char *>(info) + sizeof(*info));
if (repeat->type != REPEAT_FIRST) { if (repeat->type != REPEAT_FIRST) {
return true; return true;
} }

View File

@ -180,7 +180,7 @@ void raw_report_info_impl::fillReportLists(NFA *n, size_t base_offset,
for (const auto &reps : rl) { for (const auto &reps : rl) {
ro.emplace_back(base_offset); ro.emplace_back(base_offset);
report_list *p = (report_list *)((char *)n + base_offset); report_list *p = reinterpret_cast<report_list *>(reinterpret_cast<char *>(n) + base_offset);
u32 i = 0; u32 i = 0;
for (const ReportID report : reps.reports) { for (const ReportID report : reps.reports) {
@ -389,17 +389,17 @@ static
void fillAccelAux(struct NFA *n, dfa_info &info, void fillAccelAux(struct NFA *n, dfa_info &info,
map<dstate_id_t, AccelScheme> &accelInfo) { map<dstate_id_t, AccelScheme> &accelInfo) {
DEBUG_PRINTF("Filling accel aux structures\n"); DEBUG_PRINTF("Filling accel aux structures\n");
T *s = (T *)getMutableImplNfa(n); T *s = reinterpret_cast<T *>(getMutableImplNfa(n));
u32 offset = s->accel_offset; u32 offset = s->accel_offset;
for (dstate_id_t i = 0; i < info.size(); i++) { for (dstate_id_t i = 0; i < info.size(); i++) {
dstate_id_t state_id = info.raw_id(i); dstate_id_t state_id = info.raw_id(i);
if (accelInfo.find(state_id) != accelInfo.end()) { if (accelInfo.find(state_id) != accelInfo.end()) {
s->flags |= SHENG_FLAG_HAS_ACCEL; s->flags |= SHENG_FLAG_HAS_ACCEL;
AccelAux *aux = (AccelAux *)((char *)n + offset); AccelAux *aux = reinterpret_cast<AccelAux *>(reinterpret_cast<char *>(n) + offset);
info.strat.buildAccel(state_id, accelInfo[state_id], aux); info.strat.buildAccel(state_id, accelInfo[state_id], aux);
sstate_aux *saux = sstate_aux *saux =
(sstate_aux *)((char *)n + s->aux_offset) + state_id; reinterpret_cast<sstate_aux *>(reinterpret_cast<char *>(n) + s->aux_offset) + state_id;
saux->accel = offset; saux->accel = offset;
DEBUG_PRINTF("Accel offset: %u\n", offset); DEBUG_PRINTF("Accel offset: %u\n", offset);
offset += ROUNDUP_N(sizeof(AccelAux), alignof(AccelAux)); offset += ROUNDUP_N(sizeof(AccelAux), alignof(AccelAux));
@ -429,7 +429,7 @@ void populateBasicInfo<sheng>(struct NFA *n, dfa_info &info,
n->type = SHENG_NFA; n->type = SHENG_NFA;
n->flags |= info.raw.hasEodReports() ? NFA_ACCEPTS_EOD : 0; n->flags |= info.raw.hasEodReports() ? NFA_ACCEPTS_EOD : 0;
sheng *s = (sheng *)getMutableImplNfa(n); sheng *s = reinterpret_cast<sheng *>(getMutableImplNfa(n));
s->aux_offset = aux_offset; s->aux_offset = aux_offset;
s->report_offset = report_offset; s->report_offset = report_offset;
s->accel_offset = accel_offset; s->accel_offset = accel_offset;
@ -454,7 +454,7 @@ void populateBasicInfo<sheng32>(struct NFA *n, dfa_info &info,
n->type = SHENG_NFA_32; n->type = SHENG_NFA_32;
n->flags |= info.raw.hasEodReports() ? NFA_ACCEPTS_EOD : 0; n->flags |= info.raw.hasEodReports() ? NFA_ACCEPTS_EOD : 0;
sheng32 *s = (sheng32 *)getMutableImplNfa(n); sheng32 *s = reinterpret_cast<sheng32 *>(getMutableImplNfa(n));
s->aux_offset = aux_offset; s->aux_offset = aux_offset;
s->report_offset = report_offset; s->report_offset = report_offset;
s->accel_offset = accel_offset; s->accel_offset = accel_offset;
@ -479,7 +479,7 @@ void populateBasicInfo<sheng64>(struct NFA *n, dfa_info &info,
n->type = SHENG_NFA_64; n->type = SHENG_NFA_64;
n->flags |= info.raw.hasEodReports() ? NFA_ACCEPTS_EOD : 0; n->flags |= info.raw.hasEodReports() ? NFA_ACCEPTS_EOD : 0;
sheng64 *s = (sheng64 *)getMutableImplNfa(n); sheng64 *s = reinterpret_cast<sheng64 *>(getMutableImplNfa(n));
s->aux_offset = aux_offset; s->aux_offset = aux_offset;
s->report_offset = report_offset; s->report_offset = report_offset;
s->accel_offset = accel_offset; s->accel_offset = accel_offset;
@ -495,15 +495,15 @@ template <typename T>
static static
void fillTops(NFA *n, dfa_info &info, dstate_id_t id, void fillTops(NFA *n, dfa_info &info, dstate_id_t id,
map<dstate_id_t, AccelScheme> &accelInfo) { map<dstate_id_t, AccelScheme> &accelInfo) {
T *s = (T *)getMutableImplNfa(n); T *s = reinterpret_cast<T *>(getMutableImplNfa(n));
u32 aux_base = s->aux_offset; u32 aux_base = s->aux_offset;
DEBUG_PRINTF("Filling tops for state %u\n", id); DEBUG_PRINTF("Filling tops for state %u\n", id);
sstate_aux *aux = (sstate_aux *)((char *)n + aux_base) + id; sstate_aux *aux = reinterpret_cast<sstate_aux *>(reinterpret_cast<char *>(n) + aux_base) + id;
DEBUG_PRINTF("Aux structure for state %u, offset %zd\n", id, DEBUG_PRINTF("Aux structure for state %u, offset %zd\n", id,
(char *)aux - (char *)n); reinterpret_cast<char *>(aux) - reinterpret_cast<char *>(n));
/* we could conceivably end up in an accept/dead state on a top event, /* we could conceivably end up in an accept/dead state on a top event,
* so mark top as accept/dead state if it indeed is. * so mark top as accept/dead state if it indeed is.
@ -519,13 +519,13 @@ template <typename T>
static static
void fillAux(NFA *n, dfa_info &info, dstate_id_t id, vector<u32> &reports, void fillAux(NFA *n, dfa_info &info, dstate_id_t id, vector<u32> &reports,
vector<u32> &reports_eod, vector<u32> &report_offsets) { vector<u32> &reports_eod, vector<u32> &report_offsets) {
T *s = (T *)getMutableImplNfa(n); T *s = reinterpret_cast<T *>(getMutableImplNfa(n));
u32 aux_base = s->aux_offset; u32 aux_base = s->aux_offset;
auto raw_id = info.raw_id(id); auto raw_id = info.raw_id(id);
auto &state = info[id]; auto &state = info[id];
sstate_aux *aux = (sstate_aux *)((char *)n + aux_base) + id; sstate_aux *aux = reinterpret_cast<sstate_aux *>(reinterpret_cast<char *>(n) + aux_base) + id;
DEBUG_PRINTF("Filling aux and report structures for state %u\n", id); DEBUG_PRINTF("Filling aux and report structures for state %u\n", id);
DEBUG_PRINTF("Aux structure for state %u, offset %zd\n", id, DEBUG_PRINTF("Aux structure for state %u, offset %zd\n", id,
@ -542,7 +542,7 @@ void fillAux(NFA *n, dfa_info &info, dstate_id_t id, vector<u32> &reports,
template <typename T> template <typename T>
static static
void fillSingleReport(NFA *n, ReportID r_id) { void fillSingleReport(NFA *n, ReportID r_id) {
T *s = (T *)getMutableImplNfa(n); T *s = reinterpret_cast<T *>(getMutableImplNfa(n));
DEBUG_PRINTF("Single report ID: %u\n", r_id); DEBUG_PRINTF("Single report ID: %u\n", r_id);
s->report = r_id; s->report = r_id;
@ -689,7 +689,8 @@ bytecode_ptr<NFA> shengCompile_int(raw_dfa &raw, const CompileContext &cc,
fillAccelOut(accelInfo, accel_states); fillAccelOut(accelInfo, accel_states);
} }
if (!createShuffleMasks<T>((T *)getMutableImplNfa(nfa.get()), info, accelInfo)) { T *s = reinterpret_cast<T *>(getMutableImplNfa(nfa.get()));
if (!createShuffleMasks<T>(s, info, accelInfo)) {
return bytecode_ptr<NFA>(nullptr); return bytecode_ptr<NFA>(nullptr);
} }
@ -727,18 +728,18 @@ bytecode_ptr<NFA> sheng32Compile(raw_dfa &raw, const CompileContext &cc,
set<dstate_id_t> *accel_states) { set<dstate_id_t> *accel_states) {
if (!cc.grey.allowSheng) { if (!cc.grey.allowSheng) {
DEBUG_PRINTF("Sheng is not allowed!\n"); DEBUG_PRINTF("Sheng is not allowed!\n");
bytecode_ptr<NFA>(nullptr); return bytecode_ptr<NFA>(nullptr);
} }
#ifdef HAVE_SVE #ifdef HAVE_SVE
if (svcntb()<32) { if (svcntb()<32) {
DEBUG_PRINTF("Sheng32 failed, SVE width is too small!\n"); DEBUG_PRINTF("Sheng32 failed, SVE width is too small!\n");
bytecode_ptr<NFA>(nullptr); return bytecode_ptr<NFA>(nullptr);
} }
#else #else
if (!cc.target_info.has_avx512vbmi()) { if (!cc.target_info.has_avx512vbmi()) {
DEBUG_PRINTF("Sheng32 failed, no HS_CPU_FEATURES_AVX512VBMI!\n"); DEBUG_PRINTF("Sheng32 failed, no HS_CPU_FEATURES_AVX512VBMI!\n");
bytecode_ptr<NFA>(nullptr); return bytecode_ptr<NFA>(nullptr);
} }
#endif #endif

View File

@ -142,9 +142,9 @@ buildTamarama(const TamaInfo &tamaInfo, const u32 queue,
nfa->length = verify_u32(total_size); nfa->length = verify_u32(total_size);
nfa->queueIndex = queue; nfa->queueIndex = queue;
char *ptr = (char *)nfa.get() + sizeof(NFA); char *ptr = reinterpret_cast<char *>(nfa.get()) + sizeof(NFA);
char *base_offset = ptr; char *base_offset = ptr;
Tamarama *t = (Tamarama *)ptr; Tamarama *t = reinterpret_cast<Tamarama *>(ptr);
t->numSubEngines = verify_u32(subSize); t->numSubEngines = verify_u32(subSize);
t->activeIdxSize = verify_u8(activeIdxSize); t->activeIdxSize = verify_u8(activeIdxSize);
@ -152,11 +152,11 @@ buildTamarama(const TamaInfo &tamaInfo, const u32 queue,
copy_bytes(ptr, top_base); copy_bytes(ptr, top_base);
ptr += byte_length(top_base); ptr += byte_length(top_base);
u32 *offsets = (u32 *)ptr; u32 *offsets = reinterpret_cast<u32 *>(ptr);
char *sub_nfa_offset = ptr + sizeof(u32) * subSize; char *sub_nfa_offset = ptr + sizeof(u32) * subSize;
copyInSubnfas(base_offset, *nfa, tamaInfo, offsets, sub_nfa_offset, copyInSubnfas(base_offset, *nfa, tamaInfo, offsets, sub_nfa_offset,
activeIdxSize); activeIdxSize);
assert((size_t)(sub_nfa_offset - (char *)nfa.get()) <= total_size); assert(static_cast<size_t>(sub_nfa_offset - reinterpret_cast<char *>(nfa.get())) <= total_size);
return nfa; return nfa;
} }

View File

@ -182,7 +182,7 @@ bytecode_ptr<NFA> buildLbrVerm(const CharReach &cr, const depth &repeatMin,
enum RepeatType rtype = chooseRepeatType(repeatMin, repeatMax, minPeriod, enum RepeatType rtype = chooseRepeatType(repeatMin, repeatMax, minPeriod,
is_reset); is_reset);
auto nfa = makeLbrNfa<lbr_verm>(LBR_NFA_VERM, rtype, repeatMax); auto nfa = makeLbrNfa<lbr_verm>(LBR_NFA_VERM, rtype, repeatMax);
struct lbr_verm *lv = (struct lbr_verm *)getMutableImplNfa(nfa.get()); struct lbr_verm *lv = reinterpret_cast<struct lbr_verm *>(getMutableImplNfa(nfa.get()));
lv->c = escapes.find_first(); lv->c = escapes.find_first();
fillNfa<lbr_verm>(nfa.get(), &lv->common, report, repeatMin, repeatMax, fillNfa<lbr_verm>(nfa.get(), &lv->common, report, repeatMin, repeatMax,

View File

@ -65,7 +65,7 @@ bool isValidUtf8(const char *expression, const size_t len) {
return true; return true;
} }
const u8 *s = (const u8 *)expression; const u8 *s = reinterpret_cast<const u8 *>(expression);
u32 val; u32 val;
size_t i = 0; size_t i = 0;

View File

@ -2966,7 +2966,7 @@ void buildFragmentPrograms(const RoseBuildImpl &build,
!lit_prog.empty()) { !lit_prog.empty()) {
const auto &cfrag = fragments[pfrag.included_frag_id]; const auto &cfrag = fragments[pfrag.included_frag_id];
assert(pfrag.s.length() >= cfrag.s.length() && assert(pfrag.s.length() >= cfrag.s.length() &&
!pfrag.s.any_nocase() == !cfrag.s.any_nocase()); !pfrag.s.any_nocase() != !cfrag.s.any_nocase());
/** !pfrag.s.any_nocase() >= !cfrag.s.any_nocase()); **/ /** !pfrag.s.any_nocase() >= !cfrag.s.any_nocase()); **/
u32 child_offset = cfrag.lit_program_offset; u32 child_offset = cfrag.lit_program_offset;
DEBUG_PRINTF("child %u offset %u\n", cfrag.fragment_id, DEBUG_PRINTF("child %u offset %u\n", cfrag.fragment_id,

View File

@ -68,8 +68,8 @@ namespace ue2 {
#endif #endif
void *aligned_malloc_internal(size_t size, size_t align) { void *aligned_malloc_internal(size_t size, size_t align) {
// cppcheck-suppress cstyleCast
void *mem= nullptr;; void *mem= nullptr;;
// cppcheck-suppress cstyleCast
int rv = posix_memalign(&mem, align, size); int rv = posix_memalign(&mem, align, size);
if (rv != 0) { if (rv != 0) {
DEBUG_PRINTF("posix_memalign returned %d when asked for %zu bytes\n", DEBUG_PRINTF("posix_memalign returned %d when asked for %zu bytes\n",

View File

@ -41,37 +41,58 @@
#include "unaligned.h" #include "unaligned.h"
// Aligned loads // Aligned loads
#ifndef __cplusplus__
#define load_u8(a) (*(const u8 *)(a)) #define load_u8(a) (*(const u8 *)(a))
#define load_u16(a) (*(const u16 *)(a)) #define load_u16(a) (*(const u16 *)(a))
#define load_u32(a) (*(const u32 *)(a)) #define load_u32(a) (*(const u32 *)(a))
#define load_u64a(a) (*(const u64a *)(a)) #define load_u64a(a) (*(const u64a *)(a))
#else
#define load_u8(a) (*(reinterpret_cast<const u8 *>(a))
#define load_u16(a) (*(reinterpret_cast<const u16 *>(a))
#define load_u32(a) (*(reinterpret_cast<const u32 *>(a))
#define load_u64a(a) (*(reinterpret_cast<const u64a *>(a))
#endif // __cplusplus__
#define load_m128(a) load128(a) #define load_m128(a) load128(a)
#define load_m256(a) load256(a) #define load_m256(a) load256(a)
#define load_m384(a) load384(a) #define load_m384(a) load384(a)
#define load_m512(a) load512(a) #define load_m512(a) load512(a)
// Unaligned loads // Unaligned loads
#ifndef __cplusplus__
#define loadu_u8(a) (*(const u8 *)(a)) #define loadu_u8(a) (*(const u8 *)(a))
#define loadu_u16(a) unaligned_load_u16((const u8 *)(a)) #define loadu_u16(a) unaligned_load_u16((const u8 *)(a))
#define loadu_u32(a) unaligned_load_u32((const u8 *)(a)) #define loadu_u32(a) unaligned_load_u32((const u8 *)(a))
#define loadu_u64a(a) unaligned_load_u64a((const u8 *)(a)) #define loadu_u64a(a) unaligned_load_u64a((const u8 *)(a))
#else
#define loadu_u8(a) (*(reinterpret_cast<const u8 *>(a))
#define loadu_u16(a) unaligned_load_u16(reinterpret_cast<const u8 *>(a))
#define loadu_u32(a) unaligned_load_u32(reinterpret_cast<const u8 *>(a))
#define loadu_u64a(a) unaligned_load_u64a(reinterpret_cast<const u8 *>(a))
#endif // __cplusplus__
#define loadu_m128(a) loadu128(a) #define loadu_m128(a) loadu128(a)
#define loadu_m256(a) loadu256(a) #define loadu_m256(a) loadu256(a)
#define loadu_m384(a) loadu384(a) #define loadu_m384(a) loadu384(a)
#define loadu_m512(a) loadu512(a) #define loadu_m512(a) loadu512(a)
// Aligned stores // Aligned stores
#define store_u8(ptr, a) do { *(u8 *)(ptr) = (a); } while(0) #ifndef __cplusplus__
#define store_u16(ptr, a) do { *(u16 *)(ptr) = (a); } while(0) #define store_u8(ptr, a) do { *(reinterpret_cast<u8 *>(ptr)) = (a); } while(0)
#define store_u32(ptr, a) do { *(u32 *)(ptr) = (a); } while(0) #define store_u16(ptr, a) do { *(reinterpret_cast<u16 *>(ptr)) = (a); } while(0)
#define store_u64a(ptr, a) do { *(u64a *)(ptr) = (a); } while(0) #define store_u32(ptr, a) do { *(reinterpret_cast<u32 *>(ptr)) = (a); } while(0)
#define store_u64a(ptr, a) do { *(reinterpret_cast<u64a *>(ptr)) = (a); } while(0)
#else
#endif // __cplusplus__
#define store_m128(ptr, a) store128(ptr, a) #define store_m128(ptr, a) store128(ptr, a)
#define store_m256(ptr, a) store256(ptr, a) #define store_m256(ptr, a) store256(ptr, a)
#define store_m384(ptr, a) store384(ptr, a) #define store_m384(ptr, a) store384(ptr, a)
#define store_m512(ptr, a) store512(ptr, a) #define store_m512(ptr, a) store512(ptr, a)
// Unaligned stores // Unaligned stores
#ifndef __cplusplus__
#define storeu_u8(ptr, a) do { *(u8 *)(ptr) = (a); } while(0) #define storeu_u8(ptr, a) do { *(u8 *)(ptr) = (a); } while(0)
#else
#define storeu_u8(ptr, a) do { *(reinterpret_cast<u8 *>(ptr)) = (a); } while(0)
#endif // __cplusplus__
#define storeu_u16(ptr, a) unaligned_store_u16(ptr, a) #define storeu_u16(ptr, a) unaligned_store_u16(ptr, a)
#define storeu_u32(ptr, a) unaligned_store_u32(ptr, a) #define storeu_u32(ptr, a) unaligned_store_u32(ptr, a)
#define storeu_u64a(ptr, a) unaligned_store_u64a(ptr, a) #define storeu_u64a(ptr, a) unaligned_store_u64a(ptr, a)

View File

@ -104,7 +104,7 @@ TEST(ExtParam, LargeExactOffset) {
// Try the exact match. // Try the exact match.
corpus = "hatstand" + string(199983, '_') + "teakettle"; corpus = "hatstand" + string(199983, '_') + "teakettle";
err = hs_scan(db, corpus.c_str(), corpus.length(), 0, scratch, record_cb, err = hs_scan(db, corpus.c_str(), corpus.length(), 0, scratch, record_cb,
(void *)&c); reinterpret_cast<void *>(&c));
ASSERT_EQ(HS_SUCCESS, err); ASSERT_EQ(HS_SUCCESS, err);
ASSERT_EQ(1U, c.matches.size()); ASSERT_EQ(1U, c.matches.size());
ASSERT_EQ(MatchRecord(200000, 0), c.matches[0]); ASSERT_EQ(MatchRecord(200000, 0), c.matches[0]);

View File

@ -52,7 +52,7 @@ static
int vectorCallback(unsigned id, unsigned long long from, int vectorCallback(unsigned id, unsigned long long from,
unsigned long long to, unsigned, void *ctx) { unsigned long long to, unsigned, void *ctx) {
//printf("match id %u at (%llu,%llu)\n", id, from, to); //printf("match id %u at (%llu,%llu)\n", id, from, to);
vector<Match> *matches = (vector<Match> *)ctx; vector<Match> *matches = reinterpret_cast<vector<Match> *>(ctx);
matches->push_back(Match(id, from, to)); matches->push_back(Match(id, from, to));
return 0; return 0;
} }

View File

@ -212,7 +212,7 @@ TEST_P(LbrTest, MatchMax) {
const string corpus = matchingCorpus(params.max); const string corpus = matchingCorpus(params.max);
initQueue(); initQueue();
q.buffer = (const u8 *)corpus.c_str(); q.buffer = reinterpret_cast<const u8 *>(corpus.c_str());
q.length = corpus.length(); q.length = corpus.length();
u64a end = corpus.length(); u64a end = corpus.length();

View File

@ -94,7 +94,7 @@ hs_database_t * loadDatabase(const char *filename, bool verbose) {
} }
size_t len = st.st_size; size_t len = st.st_size;
bytes = (char *)mmap(nullptr, len, PROT_READ, MAP_SHARED, fd, 0); bytes = reinterpret_cast<char *>(mmap(nullptr, len, PROT_READ, MAP_SHARED, fd, 0));
if (bytes == MAP_FAILED) { if (bytes == MAP_FAILED) {
cout << "mmap failed" << endl; cout << "mmap failed" << endl;
close(fd); close(fd);

View File

@ -141,7 +141,7 @@ void prettyPrintRange(std::ostream &out, it_t begin, it_t end) {
static really_inline static really_inline
char *makeHex(const unsigned char *pat, unsigned patlen) { char *makeHex(const unsigned char *pat, unsigned patlen) {
size_t hexlen = patlen * 4; size_t hexlen = patlen * 4;
char *hexbuf = (char *)malloc(hexlen + 1); char *hexbuf = reinterpret_cast<char *>(malloc(hexlen + 1));
unsigned i; unsigned i;
char *buf; char *buf;
for (i = 0, buf = hexbuf; i < patlen; i++, buf += 4) { for (i = 0, buf = hexbuf; i < patlen; i++, buf += 4) {