Initial commit of Hyperscan

This commit is contained in:
Matthew Barr
2015-10-20 09:13:35 +11:00
commit 904e436f11
610 changed files with 213627 additions and 0 deletions

351
src/nfa/dfa_min.cpp Normal file
View File

@@ -0,0 +1,351 @@
/*
* Copyright (c) 2015, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Build code for DFA minimization
*/
/**
* /Summary of the Hopcrofts algorithm/
* partition := {F, Q \ F};
* work_queue := {F};
* while (work_queue is not empty) do
* choose and remove a set A from work_queue
* for each c in . do
* let X be the set of states for which a transition on c
* leads to a state in A
* for each set Y in partition for which X . Y is nonempty and
* Y \ X is nonempty do
* replace Y in partition by the two sets X . Y and Y \ X
* if Y is in work_queue
* replace Y in work_queue by the same two sets
* else
* if |X . Y| <= |Y \ X|
* add X . Y to work_queue
* else
* add Y \ X to work_queue
* end;
* end;
* end;
*/
#include "dfa_min.h"
#include "grey.h"
#include "nfa/rdfa.h"
#include "nfagraph/ng_mcclellan.h"
#include "ue2common.h"
#include "util/partitioned_set.h"
#include "util/container.h"
#include "util/ue2_containers.h"
#include <algorithm>
#include <functional>
#include <map>
#include <set>
#include <vector>
#include <iterator>
#include <boost/core/noncopyable.hpp>
#include <boost/dynamic_bitset.hpp>
using namespace std;
namespace ue2 {
namespace {
struct hopcroft_state_info {
vector<vector<dstate_id_t> > prev;
};
struct DFA_components : boost::noncopyable {
dstate_id_t nstates;
size_t inp_size;
set<size_t> work_queue;
/*Partition contains reduced states*/
partitioned_set<dstate_id_t> partition;
vector<hopcroft_state_info> states;
explicit DFA_components(const raw_dfa &rdfa);
};
} //namespace
/**
* create_map:
* Creates an initial partitioning and work_queue.
* Initial partition contains {accepting states..., Non-accepting states}
* Initial work_queue contains accepting state subsets
*
* The initial partitioning needs to distinguish between the different
* reporting behaviours (unlike standard hopcroft) --> more than one subset
* possible for the accepting states.
*
* Look for accepting states in both reports and reports_eod.
* Creates a map with a key(reports, reports_eod) and an id.
* Reports of each state are searched against the map and
* added to the corresponding id -> partition[id] and work_queue[id].
* Non Accept states are added to partition[id+1].
*/
static
vector<size_t> create_map(const raw_dfa &rdfa, set<size_t> &work_queue) {
using ReportKey = pair<flat_set<ReportID>, flat_set<ReportID>>;
map<ReportKey, size_t> subset_map;
vector<size_t> state_to_subset(rdfa.states.size(), INVALID_SUBSET);
for (size_t i = 0; i < rdfa.states.size(); i++) {
if (!rdfa.states[i].reports.empty() ||
!rdfa.states[i].reports_eod.empty()) {
ReportKey key(rdfa.states[i].reports, rdfa.states[i].reports_eod);
if (contains(subset_map, key)) {
state_to_subset[i] = subset_map[key];
} else {
size_t sub = subset_map.size();
subset_map[key] = sub;
state_to_subset[i] = sub;
work_queue.insert(sub);
}
}
}
/* handle non accepts */
size_t non_accept_sub = subset_map.size();
for (size_t i = 0; i < state_to_subset.size(); i++) {
if (state_to_subset[i] == INVALID_SUBSET) {
state_to_subset[i] = non_accept_sub;
}
}
return state_to_subset;
}
DFA_components::DFA_components(const raw_dfa &rdfa)
: nstates(rdfa.states.size()),
inp_size(rdfa.states[nstates - 1].next.size()),
partition(create_map(rdfa, work_queue)) {
/* initializing states */
for (size_t i = 0; i < nstates; i++) {
states.push_back(hopcroft_state_info());
states.back().prev.resize(inp_size);
}
for (size_t i = 0; i < nstates; i++) { // i is the previous state
for (size_t j = 0; j < inp_size; j++) {
/* Creating X_table */
dstate_id_t present_state = rdfa.states[i].next[j];
states[present_state].prev[j].push_back(i);
DEBUG_PRINTF("rdfa.states[%zu].next[%zu] %hu \n", i, j,
rdfa.states[i].next[j]);
}
}
}
/**
* choose and remove a set A from work_queue.
*/
static
void get_work_item(DFA_components &mdfa, ue2::flat_set<dstate_id_t> &A) {
A.clear();
assert(!mdfa.work_queue.empty());
set<size_t>::iterator pt = mdfa.work_queue.begin();
insert(&A, mdfa.partition[*pt]);
mdfa.work_queue.erase(pt);
}
/**
* X is the set of states for which a transition on the input leads to a state
* in A.
*/
static
void create_X(const DFA_components &mdfa, const ue2::flat_set<dstate_id_t> &A,
size_t inp, ue2::flat_set<dstate_id_t> &X) {
X.clear();
for (dstate_id_t id : A) {
insert(&X, mdfa.states[id].prev[inp]);
}
}
/**
* For a split set X, each subset S (given by part_index) in the partition, two
* sets are created: v_inter (X intersection S) and v_sub (S - X).
*
* For each subset S in the partition that could be split (v_inter is nonempty
* and v_sub is nonempty):
* - replace S in partition by the two sets v_inter and v_sub.
* - if S is in work_queue:
* - replace S in work_queue by the two subsets.
* - else:
* - replace S in work_queue by the smaller of the two sets.
*/
static
void split_and_replace_set(const size_t part_index, DFA_components &mdfa,
const ue2::flat_set<dstate_id_t> &splitter) {
/* singleton sets cannot be split */
if (mdfa.partition[part_index].size() == 1) {
return;
}
size_t small_index = mdfa.partition.split(part_index, splitter);
if (small_index == INVALID_SUBSET) {
/* the set could not be split */
return;
}
/* larger subset remains at the input subset index, if the input subset was
* already in the work queue then the larger subset will remain there. */
mdfa.work_queue.insert(small_index);
}
/**
* The complete Hopcrofts algorithm is implemented in this function.
* Choose and remove a set tray from work_queue
* For each input- X is created.
* For each subset in the partition, split_and_replace_sets are called with the
* split set.
*/
static
void dfa_min(DFA_components &mdfa) {
ue2::flat_set<dstate_id_t> A, X;
vector<size_t> cand_subsets;
while (!mdfa.work_queue.empty()) {
get_work_item(mdfa, A);
for (size_t inp = 0; inp < mdfa.inp_size; inp++) {
create_X(mdfa, A, inp, X);
if (X.empty()) {
continue;
}
/* we only need to consider subsets with at least one member in X for
* splitting */
cand_subsets.clear();
mdfa.partition.find_overlapping(X, &cand_subsets);
for (size_t sub : cand_subsets) {
split_and_replace_set(sub, mdfa, X);
}
}
}
}
/**
* Creating new dfa table
* Map ordering contains key being an equivalence classes first state
* and the value being the equivalence class index.
* Eq_state[i] tells us new state id the equivalence class located at
* partition[i].
*/
static
void mapping_new_states(const DFA_components &mdfa,
vector<dstate_id_t> &old_to_new,
raw_dfa &rdfa) {
const size_t num_partitions = mdfa.partition.size();
// Mapping from equiv class's first state to equiv class index.
map<dstate_id_t, size_t> ordering;
// New state id for each equiv class.
vector<dstate_id_t> eq_state(num_partitions);
for (size_t i = 0; i < num_partitions; i++) {
ordering[*mdfa.partition[i].begin()] = i;
}
dstate_id_t new_id = 0;
for (const auto &m : ordering) {
eq_state[m.second] = new_id++;
}
for (size_t t = 0; t < mdfa.partition.size(); t++) {
for (dstate_id_t id : mdfa.partition[t]) {
old_to_new[id] = eq_state[t];
}
}
vector<dstate> new_states;
new_states.reserve(num_partitions);
for (size_t i = 0; i < mdfa.nstates; i++) {
if (contains(ordering, i)) {
new_states.push_back(rdfa.states[i]);
}
}
rdfa.states.swap(new_states);
}
static
void renumber_new_states(const DFA_components &mdfa,
const vector<dstate_id_t> &old_to_new,
raw_dfa &rdfa) {
for (size_t i = 0; i < mdfa.partition.size(); i++) {
for (size_t j = 0; j < mdfa.inp_size; j++) {
dstate_id_t output = rdfa.states[i].next[j];
rdfa.states[i].next[j] = old_to_new[output];
}
dstate_id_t dad = rdfa.states[i].daddy;
rdfa.states[i].daddy = old_to_new[dad];
}
rdfa.start_floating = old_to_new[rdfa.start_floating];
rdfa.start_anchored = old_to_new[rdfa.start_anchored];
}
static
void new_dfa(raw_dfa &rdfa, const DFA_components &mdfa) {
if (mdfa.partition.size() != mdfa.nstates) {
vector<dstate_id_t> old_to_new(mdfa.nstates);
mapping_new_states(mdfa, old_to_new, rdfa);
renumber_new_states(mdfa, old_to_new, rdfa);
}
}
/**
* MAIN FUNCTION
*/
void minimize_hopcroft(raw_dfa &rdfa, const Grey &grey) {
if (!grey.minimizeDFA) {
return;
}
UNUSED const size_t states_before = rdfa.states.size();
DFA_components mdfa(rdfa);
dfa_min(mdfa);
new_dfa(rdfa, mdfa);
DEBUG_PRINTF("reduced from %zu to %zu states\n", states_before,
rdfa.states.size());
}
} // namespace ue2