Feature/refactor fdr (#251)

* remove the use of macros for critical loops, easier to debug
removed switch, merged get_conf_stride functions into 1

* remove the use of macros for critical loops, easier to debug
removed switch, merged get_conf_stride functions into 1
split FDR implementations into arch specific files (same for now)
This commit is contained in:
Konstantinos Margaritis
2025-11-12 14:49:41 +02:00
committed by GitHub
parent eaa8f91c95
commit 87d8b357a9
10 changed files with 798 additions and 339 deletions

196
src/fdr/arm/fdr_impl.h Normal file
View File

@@ -0,0 +1,196 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2025, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef FDR_IMPL_ARM_H
#define FDR_IMPL_ARM_H
static really_inline
void get_conf_stride(const u8 *itPtr, UNUSED const u8 *start_ptr,
UNUSED const u8 *end_ptr, u32 domain_mask, u8 stride,
const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
// get_conf_stride_4
u64a it_hi = *(const u64a *)itPtr;
u64a it_lo = *(const u64a *)(itPtr + 8);
u64a reach0 = domain_mask & it_hi;
u64a reach4 = domain_mask & (it_hi >> 32);
u64a reach8 = domain_mask & it_lo;
u64a reach12 = domain_mask & (it_lo >> 32);
m128 st0 = load_m128_from_u64a(ft + reach0);
m128 st4 = load_m128_from_u64a(ft + reach4);
m128 st8 = load_m128_from_u64a(ft + reach8);
m128 st12 = load_m128_from_u64a(ft + reach12);
st4 = lshiftbyte_m128(st4, 4);
st12 = lshiftbyte_m128(st12, 4);
*s = or128(*s, st0);
*s = or128(*s, st4);
if (stride == 4) {
*conf0 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf0 ^= ~0ULL;
*s = or128(*s, st8);
*s = or128(*s, st12);
*conf8 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf8 ^= ~0ULL;
return;
}
// get_conf_stride_2
u64a reach2 = domain_mask & (it_hi >> 16);
u64a reach6 = domain_mask & (it_hi >> 48);
u64a reach10 = domain_mask & (it_lo >> 16);
u64a reach14 = domain_mask & (it_lo >> 48);
m128 st2 = load_m128_from_u64a(ft + reach2);
m128 st6 = load_m128_from_u64a(ft + reach6);
m128 st10 = load_m128_from_u64a(ft + reach10);
m128 st14 = load_m128_from_u64a(ft + reach14);
st2 = lshiftbyte_m128(st2, 2);
st6 = lshiftbyte_m128(st6, 6);
st10 = lshiftbyte_m128(st10, 2);
st14 = lshiftbyte_m128(st14, 6);
*s = or128(*s, st2);
*s = or128(*s, st6);
if (stride == 2) {
*conf0 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf0 ^= ~0ULL;
*s = or128(*s, st8);
*s = or128(*s, st10);
*s = or128(*s, st12);
*s = or128(*s, st14);
*conf8 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf8 ^= ~0ULL;
return;
}
// get_conf_stride_1
u64a reach1 = domain_mask & (it_hi >> 8);
u64a reach3 = domain_mask & (it_hi >> 24);
u64a reach5 = domain_mask & (it_hi >> 40);
u64a reach7 = domain_mask & ((it_hi >> 56) | (it_lo << 8));
u64a reach9 = domain_mask & (it_lo >> 8);
u64a reach11 = domain_mask & (it_lo >> 24);
u64a reach13 = domain_mask & (it_lo >> 40);
u64a reach15 = domain_mask & unaligned_load_u32(itPtr + 15);
m128 st1 = load_m128_from_u64a(ft + reach1);
m128 st3 = load_m128_from_u64a(ft + reach3);
m128 st5 = load_m128_from_u64a(ft + reach5);
m128 st7 = load_m128_from_u64a(ft + reach7);
m128 st9 = load_m128_from_u64a(ft + reach9);
m128 st11 = load_m128_from_u64a(ft + reach11);
m128 st13 = load_m128_from_u64a(ft + reach13);
m128 st15 = load_m128_from_u64a(ft + reach15);
st1 = lshiftbyte_m128(st1, 1);
st3 = lshiftbyte_m128(st3, 3);
st5 = lshiftbyte_m128(st5, 5);
st7 = lshiftbyte_m128(st7, 7);
st9 = lshiftbyte_m128(st9, 1);
st11 = lshiftbyte_m128(st11, 3);
st13 = lshiftbyte_m128(st13, 5);
st15 = lshiftbyte_m128(st15, 7);
st0 = or128(st0, st1);
st2 = or128(st2, st3);
st4 = or128(st4, st5);
st6 = or128(st6, st7);
st0 = or128(st0, st2);
st4 = or128(st4, st6);
st0 = or128(st0, st4);
st8 = or128(st8, st9);
st10 = or128(st10, st11);
st12 = or128(st12, st13);
st14 = or128(st14, st15);
st8 = or128(st8, st10);
st12 = or128(st12, st14);
st8 = or128(st8, st12);
m128 st = or128(*s, st0);
*conf0 = movq(st) ^ ~0ULL;
st = rshiftbyte_m128(st, 8);
st = or128(st, st8);
*conf8 = movq(st) ^ ~0ULL;
*s = rshiftbyte_m128(st, 8);
}
static really_inline
void do_confirm_fdr(u64a *conf, u8 offset, hwlmcb_rv_t *control,
const u32 *confBase, const struct FDR_Runtime_Args *a,
const u8 *ptr, u32 *last_match_id, const struct zone *z) {
const u8 bucket = 8;
if (likely(!*conf)) {
return;
}
/* ptr is currently referring to a location in the zone's buffer, we also
* need a pointer in the original, main buffer for the final string compare.
*/
const u8 *ptr_main = (const u8 *)((uintptr_t)ptr + z->zone_pointer_adjust); //NOLINT (performance-no-int-to-ptr)
const u8 *confLoc = ptr;
do {
u32 bit = findAndClearLSB_64(conf);
u32 byte = bit / bucket + offset;
u32 bitRem = bit % bucket;
u32 idx = bitRem;
u32 cf = confBase[idx];
if (!cf) {
continue;
}
const struct FDRConfirm *fdrc = (const struct FDRConfirm *)
((const u8 *)confBase + cf);
if (!(fdrc->groups & *control)) {
continue;
}
u64a confVal = unaligned_load_u64a(confLoc + byte - sizeof(u64a) + 1);
confWithBit(fdrc, a, ptr_main - a->buf + byte, control,
last_match_id, confVal, conf, bit);
} while (unlikely(!!*conf));
}
#endif // FDR_IMPL_ARM_H

View File

@@ -1,5 +1,6 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2025, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
@@ -31,6 +32,7 @@
#include "fdr_confirm_runtime.h"
#include "fdr_internal.h"
#include "fdr_loadval.h"
#include "fdr_impl.h"
#include "flood_runtime.h"
#include "scratch.h"
#include "teddy.h"
@@ -40,86 +42,6 @@
#include "util/simd_utils.h"
#include "util/uniform_ops.h"
/** \brief number of bytes processed in each iteration */
#define ITER_BYTES 16
/** \brief total zone buffer size */
#define ZONE_TOTAL_SIZE 64
/** \brief maximum number of allowed zones */
#define ZONE_MAX 3
/** \brief zone information.
*
* Zone represents a region of data to scan in FDR.
*
* The incoming buffer is to split in multiple zones to ensure two properties:
* 1: that we can read 8? bytes behind to generate a hash safely
* 2: that we can read the 3 byte after the current byte (domain > 8)
*/
struct zone {
/** \brief copied buffer, used only when it is a boundary zone. */
u8 ALIGN_CL_DIRECTIVE buf[ZONE_TOTAL_SIZE];
/** \brief shift amount for fdr state to avoid unwanted match. */
u8 shift;
/** \brief if boundary zone, start points into the zone buffer after the
* pre-padding. Otherwise, points to the main buffer, appropriately. */
const u8 *start;
/** \brief if boundary zone, end points to the end of zone. Otherwise,
* pointer to the main buffer, appropriately. */
const u8 *end;
/** \brief the amount to adjust to go from a pointer in the zones region
* (between start and end) to a pointer in the original data buffer. */
ptrdiff_t zone_pointer_adjust;
/** \brief firstFloodDetect from FDR_Runtime_Args for non-boundary zones,
* otherwise end of the zone buf. floodPtr always points inside the same
* buffer as the start pointe. */
const u8 *floodPtr;
};
static
const ALIGN_CL_DIRECTIVE u8 zone_or_mask[ITER_BYTES+1][ITER_BYTES] = {
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
};
/* generates an initial state mask based on the last byte-ish of history rather
* than being all accepting. If there is no history to consider, the state is
* generated based on the minimum length of each bucket in order to prevent
@@ -141,197 +63,6 @@ m128 getInitState(const struct FDR *fdr, u8 len_history, const u64a *ft,
return s;
}
static really_inline
void get_conf_stride_1(const u8 *itPtr, UNUSED const u8 *start_ptr,
UNUSED const u8 *end_ptr, u32 domain_mask_flipped,
const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
/* +1: the zones ensure that we can read the byte at z->end */
assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
u64a domain_mask = ~domain_mask_flipped;
u64a it_hi = *(const u64a *)itPtr;
u64a it_lo = *(const u64a *)(itPtr + 8);
u64a reach0 = domain_mask & it_hi;
u64a reach1 = domain_mask & (it_hi >> 8);
u64a reach2 = domain_mask & (it_hi >> 16);
u64a reach3 = domain_mask & (it_hi >> 24);
u64a reach4 = domain_mask & (it_hi >> 32);
u64a reach5 = domain_mask & (it_hi >> 40);
u64a reach6 = domain_mask & (it_hi >> 48);
u64a reach7 = domain_mask & ((it_hi >> 56) | (it_lo << 8));
u64a reach8 = domain_mask & it_lo;
u64a reach9 = domain_mask & (it_lo >> 8);
u64a reach10 = domain_mask & (it_lo >> 16);
u64a reach11 = domain_mask & (it_lo >> 24);
u64a reach12 = domain_mask & (it_lo >> 32);
u64a reach13 = domain_mask & (it_lo >> 40);
u64a reach14 = domain_mask & (it_lo >> 48);
u64a reach15 = domain_mask & unaligned_load_u32(itPtr + 15);
m128 st0 = load_m128_from_u64a(ft + reach0);
m128 st1 = lshiftbyte_m128(load_m128_from_u64a(ft + reach1), 1);
m128 st2 = lshiftbyte_m128(load_m128_from_u64a(ft + reach2), 2);
m128 st3 = lshiftbyte_m128(load_m128_from_u64a(ft + reach3), 3);
m128 st4 = lshiftbyte_m128(load_m128_from_u64a(ft + reach4), 4);
m128 st5 = lshiftbyte_m128(load_m128_from_u64a(ft + reach5), 5);
m128 st6 = lshiftbyte_m128(load_m128_from_u64a(ft + reach6), 6);
m128 st7 = lshiftbyte_m128(load_m128_from_u64a(ft + reach7), 7);
m128 st8 = load_m128_from_u64a(ft + reach8);
m128 st9 = lshiftbyte_m128(load_m128_from_u64a(ft + reach9), 1);
m128 st10 = lshiftbyte_m128(load_m128_from_u64a(ft + reach10), 2);
m128 st11 = lshiftbyte_m128(load_m128_from_u64a(ft + reach11), 3);
m128 st12 = lshiftbyte_m128(load_m128_from_u64a(ft + reach12), 4);
m128 st13 = lshiftbyte_m128(load_m128_from_u64a(ft + reach13), 5);
m128 st14 = lshiftbyte_m128(load_m128_from_u64a(ft + reach14), 6);
m128 st15 = lshiftbyte_m128(load_m128_from_u64a(ft + reach15), 7);
st0 = or128(st0, st1);
st2 = or128(st2, st3);
st4 = or128(st4, st5);
st6 = or128(st6, st7);
st0 = or128(st0, st2);
st4 = or128(st4, st6);
st0 = or128(st0, st4);
st8 = or128(st8, st9);
st10 = or128(st10, st11);
st12 = or128(st12, st13);
st14 = or128(st14, st15);
st8 = or128(st8, st10);
st12 = or128(st12, st14);
st8 = or128(st8, st12);
m128 st = or128(*s, st0);
*conf0 = movq(st) ^ ~0ULL;
st = rshiftbyte_m128(st, 8);
st = or128(st, st8);
*conf8 = movq(st) ^ ~0ULL;
*s = rshiftbyte_m128(st, 8);
}
static really_inline
void get_conf_stride_2(const u8 *itPtr, UNUSED const u8 *start_ptr,
UNUSED const u8 *end_ptr, u32 domain_mask_flipped,
const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
u64a reach0 = andn(domain_mask_flipped, itPtr);
u64a reach2 = andn(domain_mask_flipped, itPtr + 2);
u64a reach4 = andn(domain_mask_flipped, itPtr + 4);
u64a reach6 = andn(domain_mask_flipped, itPtr + 6);
m128 st0 = load_m128_from_u64a(ft + reach0);
m128 st2 = load_m128_from_u64a(ft + reach2);
m128 st4 = load_m128_from_u64a(ft + reach4);
m128 st6 = load_m128_from_u64a(ft + reach6);
u64a reach8 = andn(domain_mask_flipped, itPtr + 8);
u64a reach10 = andn(domain_mask_flipped, itPtr + 10);
u64a reach12 = andn(domain_mask_flipped, itPtr + 12);
u64a reach14 = andn(domain_mask_flipped, itPtr + 14);
m128 st8 = load_m128_from_u64a(ft + reach8);
m128 st10 = load_m128_from_u64a(ft + reach10);
m128 st12 = load_m128_from_u64a(ft + reach12);
m128 st14 = load_m128_from_u64a(ft + reach14);
st2 = lshiftbyte_m128(st2, 2);
st4 = lshiftbyte_m128(st4, 4);
st6 = lshiftbyte_m128(st6, 6);
*s = or128(*s, st0);
*s = or128(*s, st2);
*s = or128(*s, st4);
*s = or128(*s, st6);
*conf0 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf0 ^= ~0ULL;
st10 = lshiftbyte_m128(st10, 2);
st12 = lshiftbyte_m128(st12, 4);
st14 = lshiftbyte_m128(st14, 6);
*s = or128(*s, st8);
*s = or128(*s, st10);
*s = or128(*s, st12);
*s = or128(*s, st14);
*conf8 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf8 ^= ~0ULL;
}
static really_inline
void get_conf_stride_4(const u8 *itPtr, UNUSED const u8 *start_ptr,
UNUSED const u8 *end_ptr, u32 domain_mask_flipped,
const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
u64a reach0 = andn(domain_mask_flipped, itPtr);
u64a reach4 = andn(domain_mask_flipped, itPtr + 4);
u64a reach8 = andn(domain_mask_flipped, itPtr + 8);
u64a reach12 = andn(domain_mask_flipped, itPtr + 12);
m128 st0 = load_m128_from_u64a(ft + reach0);
m128 st4 = load_m128_from_u64a(ft + reach4);
m128 st8 = load_m128_from_u64a(ft + reach8);
m128 st12 = load_m128_from_u64a(ft + reach12);
st4 = lshiftbyte_m128(st4, 4);
st12 = lshiftbyte_m128(st12, 4);
*s = or128(*s, st0);
*s = or128(*s, st4);
*conf0 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf0 ^= ~0ULL;
*s = or128(*s, st8);
*s = or128(*s, st12);
*conf8 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf8 ^= ~0ULL;
}
static really_inline
void do_confirm_fdr(u64a *conf, u8 offset, hwlmcb_rv_t *control,
const u32 *confBase, const struct FDR_Runtime_Args *a,
const u8 *ptr, u32 *last_match_id, const struct zone *z) {
const u8 bucket = 8;
if (likely(!*conf)) {
return;
}
/* ptr is currently referring to a location in the zone's buffer, we also
* need a pointer in the original, main buffer for the final string compare.
*/
const u8 *ptr_main = (const u8 *)((uintptr_t)ptr + z->zone_pointer_adjust); //NOLINT (performance-no-int-to-ptr)
const u8 *confLoc = ptr;
do {
u32 bit = findAndClearLSB_64(conf);
u32 byte = bit / bucket + offset;
u32 bitRem = bit % bucket;
u32 idx = bitRem;
u32 cf = confBase[idx];
if (!cf) {
continue;
}
const struct FDRConfirm *fdrc = (const struct FDRConfirm *)
((const u8 *)confBase + cf);
if (!(fdrc->groups & *control)) {
continue;
}
u64a confVal = unaligned_load_u64a(confLoc + byte - sizeof(u64a) + 1);
confWithBit(fdrc, a, ptr_main - a->buf + byte, control,
last_match_id, confVal, conf, bit);
} while (unlikely(!!*conf));
}
static really_inline
void dumpZoneInfo(UNUSED const struct zone *z, UNUSED size_t zone_id) {
#ifdef DEBUG
@@ -660,41 +391,6 @@ size_t prepareZones(const u8 *buf, size_t len, const u8 *hend,
#define INVALID_MATCH_ID (~0U)
#define FDR_MAIN_LOOP(zz, s, get_conf_fn) \
do { \
const u8 *tryFloodDetect = zz->floodPtr; \
const u8 *start_ptr = zz->start; \
const u8 *end_ptr = zz->end; \
for (const u8 *itPtr = ROUNDDOWN_PTR(start_ptr, 64); itPtr + 4*ITER_BYTES <= end_ptr; \
itPtr += 4*ITER_BYTES) { \
__builtin_prefetch(itPtr); \
} \
\
for (const u8 *itPtr = start_ptr; itPtr + ITER_BYTES <= end_ptr; \
itPtr += ITER_BYTES) { \
if (unlikely(itPtr > tryFloodDetect)) { \
tryFloodDetect = floodDetect(fdr, a, &itPtr, tryFloodDetect,\
&floodBackoff, &control, \
ITER_BYTES); \
if (unlikely(control == HWLM_TERMINATE_MATCHING)) { \
return HWLM_TERMINATED; \
} \
} \
__builtin_prefetch(itPtr + ITER_BYTES); \
u64a conf0; \
u64a conf8; \
get_conf_fn(itPtr, start_ptr, end_ptr, domain_mask_flipped, \
ft, &conf0, &conf8, &s); \
do_confirm_fdr(&conf0, 0, &control, confBase, a, itPtr, \
&last_match_id, zz); \
do_confirm_fdr(&conf8, 8, &control, confBase, a, itPtr, \
&last_match_id, zz); \
if (unlikely(control == HWLM_TERMINATE_MATCHING)) { \
return HWLM_TERMINATED; \
} \
} /* end for loop */ \
} while (0) \
static never_inline
hwlm_error_t fdr_engine_exec(const struct FDR *fdr,
const struct FDR_Runtime_Args *a,
@@ -703,8 +399,7 @@ hwlm_error_t fdr_engine_exec(const struct FDR *fdr,
u32 floodBackoff = FLOOD_BACKOFF_START;
u32 last_match_id = INVALID_MATCH_ID;
u32 domain_mask_flipped = ~fdr->domainMask;
u8 stride = fdr->stride;
const u64a *ft =
(const u64a *)((const u8 *)fdr + ROUNDUP_CL(sizeof(struct FDR)));
assert(ISALIGNED_CL(ft));
@@ -722,43 +417,40 @@ hwlm_error_t fdr_engine_exec(const struct FDR *fdr,
for (size_t curZone = 0; curZone < numZone; curZone++) {
struct zone *z = &zones[curZone];
dumpZoneInfo(z, curZone);
m128 zone_mask = load128(zone_or_mask[z->shift]);
/* When a zone contains less data than is processed in an iteration
* of FDR_MAIN_LOOP(), we need to scan over some extra data.
*
* We have chosen to scan this extra data at the start of the
* iteration. The extra data is either data we have already scanned or
* garbage (if it is earlier than offset 0),
*
* As a result we need to shift the incoming state back so that it will
* properly line up with the data being scanned.
*
* We also need to forbid reporting any matches in the data being
* rescanned as they have already been reported (or are over garbage but
* later stages should also provide that safety guarantee).
*/
const u8 *cacheline = ROUNDDOWN_PTR(z->start, 64);
__builtin_prefetch(cacheline);
u8 shift = z->shift;
const u8 *tryFloodDetect = z->floodPtr;
state = variable_byte_shift_m128(state, shift);
state = variable_byte_shift_m128(state, z->shift);
state = or128(state, zone_mask);
state = or128(state, load128(zone_or_mask[shift]));
switch (stride) {
case 1:
FDR_MAIN_LOOP(z, state, get_conf_stride_1);
break;
case 2:
FDR_MAIN_LOOP(z, state, get_conf_stride_2);
break;
case 4:
FDR_MAIN_LOOP(z, state, get_conf_stride_4);
break;
default:
break;
for (const u8 *itPtr = z->start; itPtr + ITER_BYTES <= z->end; itPtr += ITER_BYTES) {
if (unlikely(itPtr > tryFloodDetect)) {
tryFloodDetect = floodDetect(fdr, a, &itPtr, tryFloodDetect,
&floodBackoff, &control,
ITER_BYTES);
if (unlikely(control == HWLM_TERMINATE_MATCHING)) {
return HWLM_TERMINATED;
}
}
u64a conf0;
u64a conf8;
cacheline += 64;
__builtin_prefetch(cacheline);
get_conf_stride(itPtr, z->start, z->end, fdr->domainMask, fdr->stride, ft, &conf0, &conf8, &state);
do_confirm_fdr(&conf0, 0, &control, confBase, a, itPtr, &last_match_id, z);
do_confirm_fdr(&conf8, 8, &control, confBase, a, itPtr, &last_match_id, z);
if (unlikely(control == HWLM_TERMINATE_MATCHING)) {
return HWLM_TERMINATED;
}
} /* end for loop */
}
return HWLM_SUCCESS;
}

View File

@@ -1,5 +1,6 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2025, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:

119
src/fdr/fdr_impl.h Normal file
View File

@@ -0,0 +1,119 @@
/*
* Copyright (c) 2020-2025, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \brief number of bytes processed in each iteration */
#define ITER_BYTES 16
/** \brief total zone buffer size */
#define ZONE_TOTAL_SIZE 64
/** \brief maximum number of allowed zones */
#define ZONE_MAX 3
/** \brief zone information.
*
* Zone represents a region of data to scan in FDR.
*
* The incoming buffer is to split in multiple zones to ensure two properties:
* 1: that we can read 8? bytes behind to generate a hash safely
* 2: that we can read the 3 byte after the current byte (domain > 8)
*/
struct zone {
/** \brief copied buffer, used only when it is a boundary zone. */
u8 ALIGN_CL_DIRECTIVE buf[ZONE_TOTAL_SIZE];
/** \brief shift amount for fdr state to avoid unwanted match. */
u8 shift;
/** \brief if boundary zone, start points into the zone buffer after the
* pre-padding. Otherwise, points to the main buffer, appropriately. */
const u8 *start;
/** \brief if boundary zone, end points to the end of zone. Otherwise,
* pointer to the main buffer, appropriately. */
const u8 *end;
/** \brief the amount to adjust to go from a pointer in the zones region
* (between start and end) to a pointer in the original data buffer. */
ptrdiff_t zone_pointer_adjust;
/** \brief firstFloodDetect from FDR_Runtime_Args for non-boundary zones,
* otherwise end of the zone buf. floodPtr always points inside the same
* buffer as the start pointe. */
const u8 *floodPtr;
};
static
const ALIGN_CL_DIRECTIVE u8 zone_or_mask[ITER_BYTES+1][ITER_BYTES] = {
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
};
#if defined(VS_SIMDE_BACKEND)
#include "x86/fdr_impl.h"
#else
#if defined(ARCH_IA32) || defined(ARCH_X86_64)
#include "x86/fdr_impl.h"
#elif defined(ARCH_ARM32) || defined(ARCH_AARCH64)
#include "arm/fdr_impl.h"
#elif defined(ARCH_PPC64EL)
#include "ppc64le/fdr_impl.h"
#endif
#endif

196
src/fdr/ppc64le/fdr_impl.h Normal file
View File

@@ -0,0 +1,196 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2025, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef FDR_IMPL_PPC64LE_H
#define FDR_IMPL_PPC64LE_H
static really_inline
void get_conf_stride(const u8 *itPtr, UNUSED const u8 *start_ptr,
UNUSED const u8 *end_ptr, u32 domain_mask, u8 stride,
const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
// get_conf_stride_4
u64a it_hi = *(const u64a *)itPtr;
u64a it_lo = *(const u64a *)(itPtr + 8);
u64a reach0 = domain_mask & it_hi;
u64a reach4 = domain_mask & (it_hi >> 32);
u64a reach8 = domain_mask & it_lo;
u64a reach12 = domain_mask & (it_lo >> 32);
m128 st0 = load_m128_from_u64a(ft + reach0);
m128 st4 = load_m128_from_u64a(ft + reach4);
m128 st8 = load_m128_from_u64a(ft + reach8);
m128 st12 = load_m128_from_u64a(ft + reach12);
st4 = lshiftbyte_m128(st4, 4);
st12 = lshiftbyte_m128(st12, 4);
*s = or128(*s, st0);
*s = or128(*s, st4);
if (stride == 4) {
*conf0 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf0 ^= ~0ULL;
*s = or128(*s, st8);
*s = or128(*s, st12);
*conf8 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf8 ^= ~0ULL;
return;
}
// get_conf_stride_2
u64a reach2 = domain_mask & (it_hi >> 16);
u64a reach6 = domain_mask & (it_hi >> 48);
u64a reach10 = domain_mask & (it_lo >> 16);
u64a reach14 = domain_mask & (it_lo >> 48);
m128 st2 = load_m128_from_u64a(ft + reach2);
m128 st6 = load_m128_from_u64a(ft + reach6);
m128 st10 = load_m128_from_u64a(ft + reach10);
m128 st14 = load_m128_from_u64a(ft + reach14);
st2 = lshiftbyte_m128(st2, 2);
st6 = lshiftbyte_m128(st6, 6);
st10 = lshiftbyte_m128(st10, 2);
st14 = lshiftbyte_m128(st14, 6);
*s = or128(*s, st2);
*s = or128(*s, st6);
if (stride == 2) {
*conf0 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf0 ^= ~0ULL;
*s = or128(*s, st8);
*s = or128(*s, st10);
*s = or128(*s, st12);
*s = or128(*s, st14);
*conf8 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf8 ^= ~0ULL;
return;
}
// get_conf_stride_1
u64a reach1 = domain_mask & (it_hi >> 8);
u64a reach3 = domain_mask & (it_hi >> 24);
u64a reach5 = domain_mask & (it_hi >> 40);
u64a reach7 = domain_mask & ((it_hi >> 56) | (it_lo << 8));
u64a reach9 = domain_mask & (it_lo >> 8);
u64a reach11 = domain_mask & (it_lo >> 24);
u64a reach13 = domain_mask & (it_lo >> 40);
u64a reach15 = domain_mask & unaligned_load_u32(itPtr + 15);
m128 st1 = load_m128_from_u64a(ft + reach1);
m128 st3 = load_m128_from_u64a(ft + reach3);
m128 st5 = load_m128_from_u64a(ft + reach5);
m128 st7 = load_m128_from_u64a(ft + reach7);
m128 st9 = load_m128_from_u64a(ft + reach9);
m128 st11 = load_m128_from_u64a(ft + reach11);
m128 st13 = load_m128_from_u64a(ft + reach13);
m128 st15 = load_m128_from_u64a(ft + reach15);
st1 = lshiftbyte_m128(st1, 1);
st3 = lshiftbyte_m128(st3, 3);
st5 = lshiftbyte_m128(st5, 5);
st7 = lshiftbyte_m128(st7, 7);
st9 = lshiftbyte_m128(st9, 1);
st11 = lshiftbyte_m128(st11, 3);
st13 = lshiftbyte_m128(st13, 5);
st15 = lshiftbyte_m128(st15, 7);
st0 = or128(st0, st1);
st2 = or128(st2, st3);
st4 = or128(st4, st5);
st6 = or128(st6, st7);
st0 = or128(st0, st2);
st4 = or128(st4, st6);
st0 = or128(st0, st4);
st8 = or128(st8, st9);
st10 = or128(st10, st11);
st12 = or128(st12, st13);
st14 = or128(st14, st15);
st8 = or128(st8, st10);
st12 = or128(st12, st14);
st8 = or128(st8, st12);
m128 st = or128(*s, st0);
*conf0 = movq(st) ^ ~0ULL;
st = rshiftbyte_m128(st, 8);
st = or128(st, st8);
*conf8 = movq(st) ^ ~0ULL;
*s = rshiftbyte_m128(st, 8);
}
static really_inline
void do_confirm_fdr(u64a *conf, u8 offset, hwlmcb_rv_t *control,
const u32 *confBase, const struct FDR_Runtime_Args *a,
const u8 *ptr, u32 *last_match_id, const struct zone *z) {
const u8 bucket = 8;
if (likely(!*conf)) {
return;
}
/* ptr is currently referring to a location in the zone's buffer, we also
* need a pointer in the original, main buffer for the final string compare.
*/
const u8 *ptr_main = (const u8 *)((uintptr_t)ptr + z->zone_pointer_adjust); //NOLINT (performance-no-int-to-ptr)
const u8 *confLoc = ptr;
do {
u32 bit = findAndClearLSB_64(conf);
u32 byte = bit / bucket + offset;
u32 bitRem = bit % bucket;
u32 idx = bitRem;
u32 cf = confBase[idx];
if (!cf) {
continue;
}
const struct FDRConfirm *fdrc = (const struct FDRConfirm *)
((const u8 *)confBase + cf);
if (!(fdrc->groups & *control)) {
continue;
}
u64a confVal = unaligned_load_u64a(confLoc + byte - sizeof(u64a) + 1);
confWithBit(fdrc, a, ptr_main - a->buf + byte, control,
last_match_id, confVal, conf, bit);
} while (unlikely(!!*conf));
}
#endif // FDR_IMPL_PPC64LE_H

196
src/fdr/x86/fdr_impl.h Normal file
View File

@@ -0,0 +1,196 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2025, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef FDR_IMPL_X86_H
#define FDR_IMPL_X86_H
static really_inline
void get_conf_stride(const u8 *itPtr, UNUSED const u8 *start_ptr,
UNUSED const u8 *end_ptr, u32 domain_mask, u8 stride,
const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
// get_conf_stride_4
u64a it_hi = *(const u64a *)itPtr;
u64a it_lo = *(const u64a *)(itPtr + 8);
u64a reach0 = domain_mask & it_hi;
u64a reach4 = domain_mask & (it_hi >> 32);
u64a reach8 = domain_mask & it_lo;
u64a reach12 = domain_mask & (it_lo >> 32);
m128 st0 = load_m128_from_u64a(ft + reach0);
m128 st4 = load_m128_from_u64a(ft + reach4);
m128 st8 = load_m128_from_u64a(ft + reach8);
m128 st12 = load_m128_from_u64a(ft + reach12);
st4 = lshiftbyte_m128(st4, 4);
st12 = lshiftbyte_m128(st12, 4);
*s = or128(*s, st0);
*s = or128(*s, st4);
if (stride == 4) {
*conf0 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf0 ^= ~0ULL;
*s = or128(*s, st8);
*s = or128(*s, st12);
*conf8 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf8 ^= ~0ULL;
return;
}
// get_conf_stride_2
u64a reach2 = domain_mask & (it_hi >> 16);
u64a reach6 = domain_mask & (it_hi >> 48);
u64a reach10 = domain_mask & (it_lo >> 16);
u64a reach14 = domain_mask & (it_lo >> 48);
m128 st2 = load_m128_from_u64a(ft + reach2);
m128 st6 = load_m128_from_u64a(ft + reach6);
m128 st10 = load_m128_from_u64a(ft + reach10);
m128 st14 = load_m128_from_u64a(ft + reach14);
st2 = lshiftbyte_m128(st2, 2);
st6 = lshiftbyte_m128(st6, 6);
st10 = lshiftbyte_m128(st10, 2);
st14 = lshiftbyte_m128(st14, 6);
*s = or128(*s, st2);
*s = or128(*s, st6);
if (stride == 2) {
*conf0 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf0 ^= ~0ULL;
*s = or128(*s, st8);
*s = or128(*s, st10);
*s = or128(*s, st12);
*s = or128(*s, st14);
*conf8 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf8 ^= ~0ULL;
return;
}
// get_conf_stride_1
u64a reach1 = domain_mask & (it_hi >> 8);
u64a reach3 = domain_mask & (it_hi >> 24);
u64a reach5 = domain_mask & (it_hi >> 40);
u64a reach7 = domain_mask & ((it_hi >> 56) | (it_lo << 8));
u64a reach9 = domain_mask & (it_lo >> 8);
u64a reach11 = domain_mask & (it_lo >> 24);
u64a reach13 = domain_mask & (it_lo >> 40);
u64a reach15 = domain_mask & unaligned_load_u32(itPtr + 15);
m128 st1 = load_m128_from_u64a(ft + reach1);
m128 st3 = load_m128_from_u64a(ft + reach3);
m128 st5 = load_m128_from_u64a(ft + reach5);
m128 st7 = load_m128_from_u64a(ft + reach7);
m128 st9 = load_m128_from_u64a(ft + reach9);
m128 st11 = load_m128_from_u64a(ft + reach11);
m128 st13 = load_m128_from_u64a(ft + reach13);
m128 st15 = load_m128_from_u64a(ft + reach15);
st1 = lshiftbyte_m128(st1, 1);
st3 = lshiftbyte_m128(st3, 3);
st5 = lshiftbyte_m128(st5, 5);
st7 = lshiftbyte_m128(st7, 7);
st9 = lshiftbyte_m128(st9, 1);
st11 = lshiftbyte_m128(st11, 3);
st13 = lshiftbyte_m128(st13, 5);
st15 = lshiftbyte_m128(st15, 7);
st0 = or128(st0, st1);
st2 = or128(st2, st3);
st4 = or128(st4, st5);
st6 = or128(st6, st7);
st0 = or128(st0, st2);
st4 = or128(st4, st6);
st0 = or128(st0, st4);
st8 = or128(st8, st9);
st10 = or128(st10, st11);
st12 = or128(st12, st13);
st14 = or128(st14, st15);
st8 = or128(st8, st10);
st12 = or128(st12, st14);
st8 = or128(st8, st12);
m128 st = or128(*s, st0);
*conf0 = movq(st) ^ ~0ULL;
st = rshiftbyte_m128(st, 8);
st = or128(st, st8);
*conf8 = movq(st) ^ ~0ULL;
*s = rshiftbyte_m128(st, 8);
}
static really_inline
void do_confirm_fdr(u64a *conf, u8 offset, hwlmcb_rv_t *control,
const u32 *confBase, const struct FDR_Runtime_Args *a,
const u8 *ptr, u32 *last_match_id, const struct zone *z) {
const u8 bucket = 8;
if (likely(!*conf)) {
return;
}
/* ptr is currently referring to a location in the zone's buffer, we also
* need a pointer in the original, main buffer for the final string compare.
*/
const u8 *ptr_main = (const u8 *)((uintptr_t)ptr + z->zone_pointer_adjust); //NOLINT (performance-no-int-to-ptr)
const u8 *confLoc = ptr;
do {
u32 bit = findAndClearLSB_64(conf);
u32 byte = bit / bucket + offset;
u32 bitRem = bit % bucket;
u32 idx = bitRem;
u32 cf = confBase[idx];
if (!cf) {
continue;
}
const struct FDRConfirm *fdrc = (const struct FDRConfirm *)
((const u8 *)confBase + cf);
if (!(fdrc->groups & *control)) {
continue;
}
u64a confVal = unaligned_load_u64a(confLoc + byte - sizeof(u64a) + 1);
confWithBit(fdrc, a, ptr_main - a->buf + byte, control,
last_match_id, confVal, conf, bit);
} while (unlikely(!!*conf));
}
#endif // FDR_IMPL_X86_H

View File

@@ -181,6 +181,8 @@ static really_inline m128 set1_2x64(u64a c) {
return (m128) vdupq_n_u64(c);
}
#define insert32_m128(in, val, imm) ((m128) vsetq_lane_u32(val, (uint32x4_t)in, imm))
static really_inline u32 movd(const m128 in) {
return vgetq_lane_u32((uint32x4_t) in, 0);
}
@@ -449,4 +451,14 @@ m128 set2x64(u64a hi, u64a lo) {
return (m128) vld1q_u64((uint64_t *) data);
}
static really_inline
m128 widenlo128(m128 x) {
return (m128) vmovl_u32(vget_low_u32((uint32x4_t)x));
}
static really_inline
m128 widenhi128(m128 x) {
return (m128) vmovl_u32(vget_high_u32((uint32x4_t)x));
}
#endif // ARCH_ARM_SIMD_UTILS_H

View File

@@ -388,6 +388,14 @@ m256 pshufb_m256(m256 a, m256 b) {
return rv;
}
static really_inline
m256 widen128(m128 x) {
m256 rv;
rv.lo = widenlo128(x);
rv.hi = widenhi128(x);
return rv;
}
#endif // HAVE_SIMD_256_BITS
/****

View File

@@ -429,6 +429,16 @@ m128 set2x64(u64a hi, u64a lo) {
return (m128) v;
}
static really_inline
m128 widenlo128(m128 x) {
return (m128) vec_mergel((m128)x, zeroes128());
}
static really_inline
m128 widenhi128(m128 x) {
return (m128) vec_mergeh((m128)x, zeroes128());
}
#if defined(__clang__) && (__clang_major__ == 15)
#pragma clang diagnostic pop
#endif // defined(__clang__) && (__clang_major__ == 15)

View File

@@ -123,6 +123,17 @@ m128 sub_2x64(m128 a, m128 b) {
return (m128) _mm_sub_epi64(a, b);
}
static really_really_inline
m128 lshift32_m128(m128 a, unsigned b) {
#if defined(HAVE__BUILTIN_CONSTANT_P)
if (__builtin_constant_p(b)) {
return _mm_slli_epi32(a, b);
}
#endif
m128 x = _mm_cvtsi32_si128(b);
return _mm_sll_epi32(a, x);
}
static really_really_inline
m128 lshift64_m128(m128 a, unsigned b) {
#if defined(HAVE__BUILTIN_CONSTANT_P)
@@ -158,6 +169,8 @@ static really_inline m128 set1_2x64(u64a c) {
return _mm_set1_epi64x(c);
}
#define insert32_m128(in, val, imm) (m128) (_mm_insert_epi32((m128) in, (m128) val, (m128) imm))
static really_inline u32 movd(const m128 in) {
return _mm_cvtsi128_si32(in);
}
@@ -474,6 +487,16 @@ m128 set2x64(u64a hi, u64a lo) {
return _mm_set_epi64x(hi, lo);
}
static really_inline
m128 widenlo128(m128 x) {
return _mm_unpacklo_epi32(x, zeroes128());
}
static really_inline
m128 widenhi128(m128 x) {
return _mm_unpackhi_epi32(x, zeroes128());
}
/****
**** 256-bit Primitives
****/
@@ -750,6 +773,12 @@ m256 combine2x128(m128 hi, m128 lo) {
return insert128to256(cast128to256(lo), hi, 1);
#endif
}
static really_inline
m256 widen128(m128 x) {
return (m256) _mm256_cvtepu32_epi64(x);
}
#endif //AVX2
/****