FDR: Squash buckets of included literals in FDR confirm

- Change the compile of literal matchers to two passes.
 - Reverse the bucket assignment in FDR, bucket with longer literals has
   smaller bucket id.
 - Squash the buckets of included literals and jump to the the program of
   included literals directly from parent literal program without going
   through FDR confirm for included iterals.
This commit is contained in:
Wang, Xiang W 2017-06-22 04:50:45 -04:00 committed by Matthew Barr
parent d2b5523dd8
commit 86c5f7feb1
26 changed files with 1017 additions and 262 deletions

View File

@ -359,7 +359,7 @@ void do_confirm_fdr(u64a *conf, u8 offset, hwlmcb_rv_t *control,
}
u64a confVal = unaligned_load_u64a(confLoc + byte - sizeof(u64a) + 1);
confWithBit(fdrc, a, ptr_main - a->buf + byte, control,
last_match_id, confVal);
last_match_id, confVal, conf, bit);
} while (unlikely(!!*conf));
}

View File

@ -42,10 +42,13 @@
#include "ue2common.h"
#include "hwlm/hwlm_build.h"
#include "util/compare.h"
#include "util/container.h"
#include "util/dump_mask.h"
#include "util/make_unique.h"
#include "util/math.h"
#include "util/noncopyable.h"
#include "util/target_info.h"
#include "util/ue2_containers.h"
#include "util/ue2string.h"
#include "util/verify_types.h"
@ -81,7 +84,6 @@ private:
bool make_small;
u8 *tabIndexToMask(u32 indexInTable);
void assignStringsToBuckets();
#ifdef DEBUG
void dumpMasks(const u8 *defaultMask);
#endif
@ -90,10 +92,13 @@ private:
void createInitialState(FDR *fdr);
public:
FDRCompiler(vector<hwlmLiteral> lits_in, const FDREngineDescription &eng_in,
FDRCompiler(vector<hwlmLiteral> lits_in,
map<BucketIndex, std::vector<LiteralIndex>> bucketToLits_in,
const FDREngineDescription &eng_in,
bool make_small_in, const Grey &grey_in)
: eng(eng_in), grey(grey_in), tab(eng_in.getTabSizeBytes()),
lits(move(lits_in)), make_small(make_small_in) {}
lits(move(lits_in)), bucketToLits(move(bucketToLits_in)),
make_small(make_small_in) {}
bytecode_ptr<FDR> build();
};
@ -309,7 +314,10 @@ next_literal:
return chunks;
}
void FDRCompiler::assignStringsToBuckets() {
static
map<BucketIndex, vector<LiteralIndex>> assignStringsToBuckets(
vector<hwlmLiteral> &lits,
const FDREngineDescription &eng) {
const double MAX_SCORE = numeric_limits<double>::max();
assert(!lits.empty()); // Shouldn't be called with no literals.
@ -393,6 +401,7 @@ void FDRCompiler::assignStringsToBuckets() {
// our best score is in t[0][N_BUCKETS-1] and we can follow the links
// to find where our buckets should start and what goes into them
vector<vector<LiteralIndex>> buckets;
for (u32 i = 0, n = numBuckets; n && (i != numChunks - 1); n--) {
u32 j = t[i][n - 1].second;
if (j == 0) {
@ -403,21 +412,33 @@ void FDRCompiler::assignStringsToBuckets() {
u32 first_id = chunks[i].first_id;
u32 last_id = chunks[j].first_id;
assert(first_id < last_id);
u32 bucket = numBuckets - n;
UNUSED const auto &first_lit = lits[first_id];
UNUSED const auto &last_lit = lits[last_id - 1];
DEBUG_PRINTF("placing [%u-%u) in bucket %u (%u lits, len %zu-%zu, "
DEBUG_PRINTF("placing [%u-%u) in one bucket (%u lits, len %zu-%zu, "
"score %0.4f)\n",
first_id, last_id, bucket, last_id - first_id,
first_id, last_id, last_id - first_id,
first_lit.s.length(), last_lit.s.length(),
getScoreUtil(first_lit.s.length(), last_id - first_id));
auto &bucket_lits = bucketToLits[bucket];
for (u32 k = first_id; k < last_id; k++) {
bucket_lits.push_back(k);
vector<LiteralIndex> litIds;
u32 cnt = last_id - first_id;
// long literals first for included literals checking
for (u32 k = 0; k < cnt; k++) {
litIds.push_back(last_id - k - 1);
}
i = j;
buckets.push_back(litIds);
}
// reverse bucket id, longer literals come first
map<BucketIndex, vector<LiteralIndex>> bucketToLits;
size_t bucketCnt = buckets.size();
for (size_t i = 0; i < bucketCnt; i++) {
bucketToLits.emplace(bucketCnt - i - 1, move(buckets[i]));
}
return bucketToLits;
}
#ifdef DEBUG
@ -541,24 +562,216 @@ void FDRCompiler::setupTab() {
}
bytecode_ptr<FDR> FDRCompiler::build() {
assignStringsToBuckets();
setupTab();
return setupFDR();
}
static
bool isSuffix(const hwlmLiteral &lit1, const hwlmLiteral &lit2) {
auto s1 = lit1.s;
auto s2 = lit2.s;
if (lit1.nocase || lit2.nocase) {
upperString(s1);
upperString(s2);
}
size_t len1 = s1.length();
size_t len2 = s2.length();
assert(len1 >= len2);
return equal(s2.begin(), s2.end(), s1.begin() + len1 - len2);
}
/*
* if lit2 is a suffix of lit1 but the case sensitivity, groups or mask info
* of lit2 is a subset of lit1, then lit1 can't squash lit2 and lit2 can
* possibly match when lit1 matches. In this case, we can't do bucket
* squashing. e.g. AAA(no case) in bucket 0, AA(no case) and aa in bucket 1,
* we can't squash bucket 1 if we have input like "aaa" as aa can also match.
*/
static
bool includedCheck(const hwlmLiteral &lit1, const hwlmLiteral &lit2) {
/* lit1 is caseless and lit2 is case sensitive */
if ((lit1.nocase && !lit2.nocase)) {
return true;
}
/* lit2's group is a subset of lit1 */
if (lit1.groups != lit2.groups &&
(lit2.groups == (lit1.groups & lit2.groups))) {
return true;
}
/* TODO: narrow down cases for mask check */
if (lit1.cmp != lit2.cmp || lit1.msk != lit2.msk) {
return true;
}
return false;
}
/*
* if lit2 is an included literal of both lit1 and lit0, and lit1 is an
* exceptional literal of lit0 - lit1 sometimes matches when lit0 matches,
* then we give up squashing for lit1. e.g. lit0:AAA(no case), lit1:aa,
* lit2:A(no case). We can have duplicate matches for input "aaa" if lit0
* and lit1 both squash lit2.
*/
static
bool checkParentLit(
u32 pos1, const unordered_set<u32> &parent_map,
const unordered_map<u32, unordered_set<u32>> &exception_map) {
for (const auto pos2 : parent_map) {
if (contains(exception_map, pos2)) {
const auto &exception_pos = exception_map.at(pos2);
if (contains(exception_pos, pos1)) {
return false;
}
}
}
return true;
}
static
void buildSquashMask(vector<hwlmLiteral> &lits, u32 id1, u32 bucket1,
size_t start, const vector<pair<u32, u32>> &group,
unordered_map<u32, unordered_set<u32>> &parent_map,
unordered_map<u32, unordered_set<u32>> &exception_map) {
auto &lit1 = lits[id1];
DEBUG_PRINTF("b:%u len:%zu\n", bucket1, lit1.s.length());
size_t cnt = group.size();
bool included = false;
bool exception = false;
u32 child_id = ~0U;
for (size_t i = start; i < cnt; i++) {
u32 bucket2 = group[i].first;
assert(bucket2 >= bucket1);
u32 id2 = group[i].second;
auto &lit2 = lits[id2];
// check if lit2 is a suffix of lit1
if (isSuffix(lit1, lit2)) {
/* if we have a included literal in the same bucket,
* quit and let the included literal to do possible squashing
*/
if (bucket1 == bucket2) {
DEBUG_PRINTF("same bucket\n");
return;
}
/*
* if lit2 is a suffix but doesn't pass included checks for
* extra info, we give up sqaushing
*/
if (includedCheck(lit1, lit2)) {
DEBUG_PRINTF("find exceptional suffix %u\n", lit2.id);
exception_map[id1].insert(id2);
exception = true;
} else if (checkParentLit(id1, parent_map[id2], exception_map)) {
if (lit1.included_id == INVALID_LIT_ID) {
DEBUG_PRINTF("find suffix lit1 %u lit2 %u\n",
lit1.id, lit2.id);
lit1.included_id = lit2.id;
} else {
/*
* if we have multiple included literals in one bucket,
* give up squashing.
*/
DEBUG_PRINTF("multiple included literals\n");
lit1.included_id = INVALID_LIT_ID;
return;
}
child_id = id2;
included = true;
}
}
size_t next = i + 1;
u32 nextBucket = next < cnt ? group[next].first : ~0U;
if (bucket2 != nextBucket) {
if (included) {
if (exception) {
/*
* give up if we have exception literals
* in the same bucket as the included literal
*/
lit1.included_id = INVALID_LIT_ID;
} else {
parent_map[child_id].insert(id1);
lit1.squash |= 1U << bucket2;
DEBUG_PRINTF("build squash mask %2x for %u\n",
lit1.squash, lit1.id);
}
return;
}
exception = false;
}
}
}
static constexpr u32 INCLUDED_LIMIT = 1000;
static
void findIncludedLits(vector<hwlmLiteral> &lits,
const vector<vector<pair<u32, u32>>> &lastCharMap) {
/** Map for finding the positions of literal which includes a literal
* in FDR hwlm literal vector.
*/
unordered_map<u32, unordered_set<u32>> parent_map;
/** Map for finding the positions of exception literals which could
* sometimes match if a literal matches in FDR hwlm literal vector.
*/
unordered_map<u32, unordered_set<u32>> exception_map;
for (const auto &group : lastCharMap) {
size_t cnt = group.size();
if (cnt > INCLUDED_LIMIT) {
continue;
}
for (size_t i = 0; i < cnt; i++) {
u32 bucket1 = group[i].first;
u32 id1 = group[i].second;
buildSquashMask(lits, id1, bucket1, i + 1, group, parent_map,
exception_map);
}
}
}
static
void addIncludedInfo(
vector<hwlmLiteral> &lits, u32 nBuckets,
map<BucketIndex, vector<LiteralIndex>> &bucketToLits) {
vector<vector<pair<u32, u32>>> lastCharMap(256);
for (BucketIndex b = 0; b < nBuckets; b++) {
if (!bucketToLits[b].empty()) {
for (const LiteralIndex &lit_idx : bucketToLits[b]) {
const auto &lit = lits[lit_idx];
u8 c = mytoupper(lit.s.back());
lastCharMap[c].emplace_back(b, lit_idx);
}
}
}
findIncludedLits(lits, lastCharMap);
}
} // namespace
static
bytecode_ptr<FDR> fdrBuildTableInternal(const vector<hwlmLiteral> &lits,
bool make_small, const target_t &target,
const Grey &grey, u32 hint) {
unique_ptr<HWLMProto> fdrBuildProtoInternal(u8 engType,
vector<hwlmLiteral> &lits,
bool make_small,
const target_t &target,
const Grey &grey, u32 hint) {
DEBUG_PRINTF("cpu has %s\n", target.has_avx2() ? "avx2" : "no-avx2");
if (grey.fdrAllowTeddy) {
auto fdr = teddyBuildTableHinted(lits, make_small, hint, target, grey);
if (fdr) {
auto proto = teddyBuildProtoHinted(engType, lits, make_small, hint,
target);
if (proto) {
DEBUG_PRINTF("build with teddy succeeded\n");
return fdr;
return proto;
} else {
DEBUG_PRINTF("build with teddy failed, will try with FDR\n");
}
@ -576,23 +789,47 @@ bytecode_ptr<FDR> fdrBuildTableInternal(const vector<hwlmLiteral> &lits,
des->stride = 1;
}
FDRCompiler fc(lits, *des, make_small, grey);
auto bucketToLits = assignStringsToBuckets(lits, *des);
addIncludedInfo(lits, des->getNumBuckets(), bucketToLits);
auto proto =
ue2::make_unique<HWLMProto>(engType, move(des), lits, bucketToLits,
make_small);
return proto;
}
unique_ptr<HWLMProto> fdrBuildProto(u8 engType, vector<hwlmLiteral> lits,
bool make_small, const target_t &target,
const Grey &grey) {
return fdrBuildProtoInternal(engType, lits, make_small, target, grey,
HINT_INVALID);
}
static
bytecode_ptr<FDR> fdrBuildTableInternal(const HWLMProto &proto,
const Grey &grey) {
if (proto.teddyEng) {
return teddyBuildTable(proto, grey);
}
FDRCompiler fc(proto.lits, proto.bucketToLits, *(proto.fdrEng),
proto.make_small, grey);
return fc.build();
}
bytecode_ptr<FDR> fdrBuildTable(const vector<hwlmLiteral> &lits,
bool make_small, const target_t &target,
const Grey &grey) {
return fdrBuildTableInternal(lits, make_small, target, grey, HINT_INVALID);
bytecode_ptr<FDR> fdrBuildTable(const HWLMProto &proto, const Grey &grey) {
return fdrBuildTableInternal(proto, grey);
}
#if !defined(RELEASE_BUILD)
bytecode_ptr<FDR> fdrBuildTableHinted(const vector<hwlmLiteral> &lits,
bool make_small, u32 hint,
const target_t &target,
const Grey &grey) {
return fdrBuildTableInternal(lits, make_small, target, grey, hint);
unique_ptr<HWLMProto> fdrBuildProtoHinted(u8 engType,
vector<hwlmLiteral> lits,
bool make_small, u32 hint,
const target_t &target,
const Grey &grey) {
return fdrBuildProtoInternal(engType, lits, make_small, target, grey,
hint);
}
#endif

View File

@ -34,6 +34,7 @@
#define FDR_COMPILE_H
#include "ue2common.h"
#include "hwlm/hwlm_build.h"
#include "util/bytecode_ptr.h"
#include <vector>
@ -46,18 +47,23 @@ struct hwlmLiteral;
struct Grey;
struct target_t;
bytecode_ptr<FDR> fdrBuildTable(const std::vector<hwlmLiteral> &lits,
bool make_small, const target_t &target,
const Grey &grey);
bytecode_ptr<FDR> fdrBuildTable(const HWLMProto &proto, const Grey &grey);
#if !defined(RELEASE_BUILD)
bytecode_ptr<FDR> fdrBuildTableHinted(const std::vector<hwlmLiteral> &lits,
bool make_small, u32 hint,
const target_t &target, const Grey &grey);
std::unique_ptr<HWLMProto> fdrBuildProtoHinted(
u8 engType,
std::vector<hwlmLiteral> lits,
bool make_small, u32 hint,
const target_t &target,
const Grey &grey);
#endif
std::unique_ptr<HWLMProto> fdrBuildProto(
u8 engType,
std::vector<hwlmLiteral> lits,
bool make_small, const target_t &target,
const Grey &grey);
/** \brief Returns size in bytes of the given FDR engine. */
size_t fdrSize(const struct FDR *fdr);

View File

@ -57,10 +57,11 @@ class FDREngineDescription;
struct hwlmStreamingControl;
struct Grey;
bytecode_ptr<u8> setupFullConfs(const std::vector<hwlmLiteral> &lits,
const EngineDescription &eng,
std::map<BucketIndex, std::vector<LiteralIndex>> &bucketToLits,
bool make_small);
bytecode_ptr<u8> setupFullConfs(
const std::vector<hwlmLiteral> &lits,
const EngineDescription &eng,
const std::map<BucketIndex, std::vector<LiteralIndex>> &bucketToLits,
bool make_small);
// all suffixes include an implicit max_bucket_width suffix to ensure that
// we always read a full-scale flood "behind" us in terms of what's in our

View File

@ -292,7 +292,7 @@ bytecode_ptr<FDRConfirm> getFDRConfirm(const vector<hwlmLiteral> &lits,
bytecode_ptr<u8>
setupFullConfs(const vector<hwlmLiteral> &lits,
const EngineDescription &eng,
map<BucketIndex, vector<LiteralIndex>> &bucketToLits,
const map<BucketIndex, vector<LiteralIndex>> &bucketToLits,
bool make_small) {
unique_ptr<TeddyEngineDescription> teddyDescr =
getTeddyDescription(eng.getID());
@ -300,9 +300,9 @@ setupFullConfs(const vector<hwlmLiteral> &lits,
BC2CONF bc2Conf;
u32 totalConfirmSize = 0;
for (BucketIndex b = 0; b < eng.getNumBuckets(); b++) {
if (!bucketToLits[b].empty()) {
if (contains(bucketToLits, b)) {
vector<hwlmLiteral> vl;
for (const LiteralIndex &lit_idx : bucketToLits[b]) {
for (const LiteralIndex &lit_idx : bucketToLits.at(b)) {
vl.push_back(lits[lit_idx]);
}

View File

@ -29,6 +29,7 @@
#ifndef FDR_CONFIRM_RUNTIME_H
#define FDR_CONFIRM_RUNTIME_H
#include "scratch.h"
#include "fdr_internal.h"
#include "fdr_loadval.h"
#include "hwlm/hwlm.h"
@ -41,7 +42,7 @@
static really_inline
void confWithBit(const struct FDRConfirm *fdrc, const struct FDR_Runtime_Args *a,
size_t i, hwlmcb_rv_t *control, u32 *last_match,
u64a conf_key) {
u64a conf_key, u64a *conf, u8 bit) {
assert(i < a->len);
assert(i >= a->start_offset);
assert(ISALIGNED(fdrc));
@ -57,6 +58,10 @@ void confWithBit(const struct FDRConfirm *fdrc, const struct FDR_Runtime_Args *a
const struct LitInfo *li
= (const struct LitInfo *)((const u8 *)fdrc + start);
struct hs_scratch *scratch = a->scratch;
assert(!scratch->fdr_conf);
scratch->fdr_conf = conf;
scratch->fdr_conf_offset = bit;
u8 oldNext; // initialized in loop
do {
assert(ISALIGNED(li));
@ -88,11 +93,12 @@ void confWithBit(const struct FDRConfirm *fdrc, const struct FDR_Runtime_Args *a
}
*last_match = li->id;
*control = a->cb(i, li->id, a->scratch);
*control = a->cb(i, li->id, scratch);
out:
oldNext = li->next; // oldNext is either 0 or an 'adjust' value
li++;
} while (oldNext);
scratch->fdr_conf = NULL;
}
#endif

View File

@ -42,9 +42,11 @@
#include "teddy_engine_description.h"
#include "grey.h"
#include "ue2common.h"
#include "hwlm/hwlm_build.h"
#include "util/alloc.h"
#include "util/compare.h"
#include "util/container.h"
#include "util/make_unique.h"
#include "util/noncopyable.h"
#include "util/popcount.h"
#include "util/target_info.h"
@ -77,17 +79,18 @@ class TeddyCompiler : noncopyable {
const TeddyEngineDescription &eng;
const Grey &grey;
const vector<hwlmLiteral> &lits;
map<BucketIndex, std::vector<LiteralIndex>> bucketToLits;
bool make_small;
public:
TeddyCompiler(const vector<hwlmLiteral> &lits_in,
map<BucketIndex, std::vector<LiteralIndex>> bucketToLits_in,
const TeddyEngineDescription &eng_in, bool make_small_in,
const Grey &grey_in)
: eng(eng_in), grey(grey_in), lits(lits_in), make_small(make_small_in) {
}
: eng(eng_in), grey(grey_in), lits(lits_in),
bucketToLits(move(bucketToLits_in)), make_small(make_small_in) {}
bytecode_ptr<FDR> build();
bool pack(map<BucketIndex, std::vector<LiteralIndex>> &bucketToLits);
};
class TeddySet {
@ -216,8 +219,10 @@ public:
}
};
bool TeddyCompiler::pack(map<BucketIndex,
std::vector<LiteralIndex>> &bucketToLits) {
static
bool pack(const vector<hwlmLiteral> &lits,
const TeddyEngineDescription &eng,
map<BucketIndex, std::vector<LiteralIndex>> &bucketToLits) {
set<TeddySet> sts;
for (u32 i = 0; i < lits.size(); i++) {
@ -473,30 +478,6 @@ void fillReinforcedTable(const map<BucketIndex,
}
bytecode_ptr<FDR> TeddyCompiler::build() {
assert(eng.numMasks <= MAX_NUM_MASKS);
if (lits.size() > eng.getNumBuckets() * TEDDY_BUCKET_LOAD) {
DEBUG_PRINTF("too many literals: %zu\n", lits.size());
return nullptr;
}
#ifdef TEDDY_DEBUG
for (size_t i = 0; i < lits.size(); i++) {
printf("lit %zu (len = %zu, %s) is ", i, lits[i].s.size(),
lits[i].nocase ? "caseless" : "caseful");
for (size_t j = 0; j < lits[i].s.size(); j++) {
printf("%02x", ((u32)lits[i].s[j])&0xff);
}
printf("\n");
}
#endif
map<BucketIndex, std::vector<LiteralIndex>> bucketToLits;
if (!pack(bucketToLits)) {
DEBUG_PRINTF("more lits (%zu) than buckets (%u), can't pack.\n",
lits.size(), eng.getNumBuckets());
return nullptr;
}
u32 maskWidth = eng.getNumBuckets() / 8;
size_t headerSize = sizeof(Teddy);
@ -565,12 +546,49 @@ bytecode_ptr<FDR> TeddyCompiler::build() {
return fdr;
}
static
bool assignStringsToBuckets(
const vector<hwlmLiteral> &lits,
TeddyEngineDescription &eng,
map<BucketIndex, vector<LiteralIndex>> &bucketToLits) {
assert(eng.numMasks <= MAX_NUM_MASKS);
if (lits.size() > eng.getNumBuckets() * TEDDY_BUCKET_LOAD) {
DEBUG_PRINTF("too many literals: %zu\n", lits.size());
return false;
}
#ifdef TEDDY_DEBUG
for (size_t i = 0; i < lits.size(); i++) {
printf("lit %zu (len = %zu, %s) is ", i, lits[i].s.size(),
lits[i].nocase ? "caseless" : "caseful");
for (size_t j = 0; j < lits[i].s.size(); j++) {
printf("%02x", ((u32)lits[i].s[j])&0xff);
}
printf("\n");
}
#endif
if (!pack(lits, eng, bucketToLits)) {
DEBUG_PRINTF("more lits (%zu) than buckets (%u), can't pack.\n",
lits.size(), eng.getNumBuckets());
return false;
}
return true;
}
} // namespace
bytecode_ptr<FDR> teddyBuildTableHinted(const vector<hwlmLiteral> &lits,
bool make_small, u32 hint,
const target_t &target,
const Grey &grey) {
bytecode_ptr<FDR> teddyBuildTable(const HWLMProto &proto, const Grey &grey) {
TeddyCompiler tc(proto.lits, proto.bucketToLits, *(proto.teddyEng),
proto.make_small, grey);
return tc.build();
}
unique_ptr<HWLMProto> teddyBuildProtoHinted(
u8 engType, const vector<hwlmLiteral> &lits,
bool make_small, u32 hint, const target_t &target) {
unique_ptr<TeddyEngineDescription> des;
if (hint == HINT_INVALID) {
des = chooseTeddyEngine(target, lits);
@ -580,8 +598,14 @@ bytecode_ptr<FDR> teddyBuildTableHinted(const vector<hwlmLiteral> &lits,
if (!des) {
return nullptr;
}
TeddyCompiler tc(lits, *des, make_small, grey);
return tc.build();
map<BucketIndex, std::vector<LiteralIndex>> bucketToLits;
if (!assignStringsToBuckets(lits, *des, bucketToLits)) {
return nullptr;
}
return ue2::make_unique<HWLMProto>(engType, move(des), lits,
bucketToLits, make_small);
}
} // namespace ue2

View File

@ -35,6 +35,7 @@
#define TEDDY_COMPILE_H
#include "ue2common.h"
#include "hwlm/hwlm_build.h"
#include "util/bytecode_ptr.h"
#include <vector>
@ -46,12 +47,13 @@ namespace ue2 {
struct Grey;
struct hwlmLiteral;
struct target_t;
struct TeddyEngineDescription;
bytecode_ptr<FDR> teddyBuildTableHinted(const std::vector<hwlmLiteral> &lits,
bool make_small, u32 hint,
const target_t &target,
const Grey &grey);
bytecode_ptr<FDR> teddyBuildTable(const HWLMProto &proto, const Grey &grey);
std::unique_ptr<HWLMProto> teddyBuildProtoHinted(
u8 engType, const std::vector<hwlmLiteral> &lits,
bool make_small, u32 hint, const target_t &target);
} // namespace ue2
#endif // TEDDY_COMPILE_H

View File

@ -419,9 +419,10 @@ void do_confWithBit_teddy(TEDDY_CONF_TYPE *conf, u8 bucket, u8 offset,
if (!(fdrc->groups & *control)) {
continue;
}
u64a tmp = 0;
u64a confVal = getConfVal(a, ptr, byte, reason);
confWithBit(fdrc, a, ptr - a->buf + byte, control,
last_match, confVal);
last_match, confVal, &tmp, 0);
} while (unlikely(*conf));
}

View File

@ -41,8 +41,12 @@
#include "scratch.h"
#include "ue2common.h"
#include "fdr/fdr_compile.h"
#include "fdr/fdr_compile_internal.h"
#include "fdr/fdr_engine_description.h"
#include "fdr/teddy_engine_description.h"
#include "util/compile_context.h"
#include "util/compile_error.h"
#include "util/make_unique.h"
#include "util/ue2string.h"
#include <cassert>
@ -53,6 +57,28 @@ using namespace std;
namespace ue2 {
HWLMProto::HWLMProto(u8 engType_in, vector<hwlmLiteral> lits_in)
: engType(engType_in), lits(move(lits_in)) {}
HWLMProto::HWLMProto(u8 engType_in,
unique_ptr<FDREngineDescription> eng_in,
vector<hwlmLiteral> lits_in,
map<u32, vector<u32>> bucketToLits_in,
bool make_small_in)
: engType(engType_in), fdrEng(move(eng_in)), lits(move(lits_in)),
bucketToLits(move(bucketToLits_in)), make_small(make_small_in) {}
HWLMProto::HWLMProto(u8 engType_in,
unique_ptr<TeddyEngineDescription> eng_in,
vector<hwlmLiteral> lits_in,
map<u32, vector<u32>> bucketToLits_in,
bool make_small_in)
: engType(engType_in), teddyEng(move(eng_in)),
lits(move(lits_in)),
bucketToLits(move(bucketToLits_in)), make_small(make_small_in) {}
HWLMProto::~HWLMProto() {}
static
void dumpLits(UNUSED const vector<hwlmLiteral> &lits) {
#ifdef DEBUG
@ -92,9 +118,52 @@ bool isNoodleable(const vector<hwlmLiteral> &lits,
return true;
}
bytecode_ptr<HWLM> hwlmBuild(const vector<hwlmLiteral> &lits, bool make_small,
const CompileContext &cc,
bytecode_ptr<HWLM> hwlmBuild(const HWLMProto &proto, const CompileContext &cc,
UNUSED hwlm_group_t expected_groups) {
size_t engSize = 0;
shared_ptr<void> eng;
const auto &lits = proto.lits;
DEBUG_PRINTF("building table with %zu strings\n", lits.size());
if (proto.engType == HWLM_ENGINE_NOOD) {
DEBUG_PRINTF("build noodle table\n");
const hwlmLiteral &lit = lits.front();
auto noodle = noodBuildTable(lit);
if (noodle) {
engSize = noodle.size();
}
eng = move(noodle);
} else {
DEBUG_PRINTF("building a new deal\n");
auto fdr = fdrBuildTable(proto, cc.grey);
if (fdr) {
engSize = fdr.size();
}
eng = move(fdr);
}
if (!eng) {
return nullptr;
}
assert(engSize);
if (engSize > cc.grey.limitLiteralMatcherSize) {
throw ResourceLimitError();
}
const size_t hwlm_len = ROUNDUP_CL(sizeof(HWLM)) + engSize;
auto h = make_zeroed_bytecode_ptr<HWLM>(hwlm_len, 64);
h->type = proto.engType;
memcpy(HWLM_DATA(h.get()), eng.get(), engSize);
return h;
}
unique_ptr<HWLMProto>
hwlmBuildProto(vector<hwlmLiteral> &lits, bool make_small,
const CompileContext &cc) {
assert(!lits.empty());
dumpLits(lits);
@ -124,9 +193,7 @@ bytecode_ptr<HWLM> hwlmBuild(const vector<hwlmLiteral> &lits, bool make_small,
}
}
u8 engType = 0;
size_t engSize = 0;
shared_ptr<void> eng;
unique_ptr<HWLMProto> proto;
DEBUG_PRINTF("building table with %zu strings\n", lits.size());
@ -134,39 +201,17 @@ bytecode_ptr<HWLM> hwlmBuild(const vector<hwlmLiteral> &lits, bool make_small,
if (isNoodleable(lits, cc)) {
DEBUG_PRINTF("build noodle table\n");
engType = HWLM_ENGINE_NOOD;
const hwlmLiteral &lit = lits.front();
auto noodle = noodBuildTable(lit);
if (noodle) {
engSize = noodle.size();
}
eng = move(noodle);
proto = ue2::make_unique<HWLMProto>(HWLM_ENGINE_NOOD, lits);
} else {
DEBUG_PRINTF("building a new deal\n");
engType = HWLM_ENGINE_FDR;
auto fdr = fdrBuildTable(lits, make_small, cc.target_info, cc.grey);
if (fdr) {
engSize = fdr.size();
proto = fdrBuildProto(HWLM_ENGINE_FDR, lits, make_small,
cc.target_info, cc.grey);
if (!proto) {
return nullptr;
}
eng = move(fdr);
}
if (!eng) {
return nullptr;
}
assert(engSize);
if (engSize > cc.grey.limitLiteralMatcherSize) {
throw ResourceLimitError();
}
const size_t hwlm_len = ROUNDUP_CL(sizeof(HWLM)) + engSize;
auto h = make_zeroed_bytecode_ptr<HWLM>(hwlm_len, 64);
h->type = engType;
memcpy(HWLM_DATA(h.get()), eng.get(), engSize);
return h;
return proto;
}
size_t hwlmSize(const HWLM *h) {

View File

@ -34,9 +34,11 @@
#define HWLM_BUILD_H
#include "hwlm.h"
#include "hwlm_literal.h"
#include "ue2common.h"
#include "util/bytecode_ptr.h"
#include <map>
#include <memory>
#include <vector>
@ -44,15 +46,62 @@ struct HWLM;
namespace ue2 {
class FDREngineDescription;
class TeddyEngineDescription;
struct CompileContext;
struct Grey;
struct hwlmLiteral;
/** \brief Class representing a literal matcher prototype. */
struct HWLMProto {
/**
* \brief Engine type to distinguish noodle from FDR and Teddy.
*/
u8 engType;
/**
* \brief FDR engine description.
*/
std::unique_ptr<FDREngineDescription> fdrEng;
/**
* \brief Teddy engine description.
*/
std::unique_ptr<TeddyEngineDescription> teddyEng;
/**
* \brief HWLM literals passed from Rose.
*/
std::vector<hwlmLiteral> lits;
/**
* \brief Bucket assignment info in FDR and Teddy
*/
std::map<u32, std::vector<u32>> bucketToLits;
/**
* \brief Flag to optimise matcher for small size from Rose.
*/
bool make_small;
HWLMProto(u8 engType_in, std::vector<hwlmLiteral> lits_in);
HWLMProto(u8 engType_in, std::unique_ptr<FDREngineDescription> eng_in,
std::vector<hwlmLiteral> lits_in,
std::map<u32, std::vector<u32>> bucketToLits_in,
bool make_small_in);
HWLMProto(u8 engType_in, std::unique_ptr<TeddyEngineDescription> eng_in,
std::vector<hwlmLiteral> lits_in,
std::map<u32, std::vector<u32>> bucketToLits_in,
bool make_small_in);
~HWLMProto();
};
/** \brief Build an \ref HWLM literal matcher runtime structure for a group of
* literals.
*
* \param lits The group of literals.
* \param make_small Optimise matcher for small size.
* \param proto Literal matcher prototype.
* \param cc Compile context.
* \param expected_groups FIXME: document me!
*
@ -60,10 +109,13 @@ struct hwlmLiteral;
* may result in a nullptr return value, or a std::bad_alloc exception being
* thrown.
*/
bytecode_ptr<HWLM> hwlmBuild(const std::vector<hwlmLiteral> &lits,
bool make_small, const CompileContext &cc,
bytecode_ptr<HWLM> hwlmBuild(const HWLMProto &proto, const CompileContext &cc,
hwlm_group_t expected_groups = HWLM_ALL_GROUPS);
std::unique_ptr<HWLMProto>
hwlmBuildProto(std::vector<hwlmLiteral> &lits, bool make_small,
const CompileContext &cc);
/**
* Returns an estimate of the number of repeated characters on the end of a
* literal that will make a literal set of size \a numLiterals suffer

View File

@ -45,6 +45,8 @@ namespace ue2 {
/** \brief Max length of the hwlmLiteral::msk and hwlmLiteral::cmp vectors. */
#define HWLM_MASKLEN 8
#define INVALID_LIT_ID ~0U
/** \brief Class representing a literal, fed to \ref hwlmBuild. */
struct hwlmLiteral {
std::string s; //!< \brief The literal itself.
@ -64,6 +66,21 @@ struct hwlmLiteral {
* can be quashed by the literal matcher. */
bool noruns;
/** \brief included literal id. */
u32 included_id = INVALID_LIT_ID;
/** \brief Squash mask for FDR's confirm mask for included literals.
*
* In FDR confirm, if we have included literal in another bucket,
* we can use this mask to squash the bit for the bucket in FDR confirm
* mask and then run programs of included literal directly and avoid
* confirm work.
*
* This value is calculated in FDR compile code once bucket assignment is
* completed
*/
u8 squash = 0;
/** \brief Set of groups that literal belongs to.
*
* Use \ref HWLM_ALL_GROUPS for a literal that could match regardless of

View File

@ -2570,6 +2570,23 @@ hwlmcb_rv_t roseRunProgram_i(const struct RoseEngine *t,
}
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(INCLUDED_JUMP) {
if (scratch->fdr_conf) {
// squash the bucket of included literal
u8 shift = scratch->fdr_conf_offset & ~7U;
u64a mask = ((~(u64a)ri->squash) << shift);
*(scratch->fdr_conf) &= mask;
pc = getByOffset(t, ri->child_offset);
pc_base = pc;
programOffset = (const u8 *)pc_base -(const u8 *)t;
DEBUG_PRINTF("pc_base %p pc %p child_offset %u\n",
pc_base, pc, ri->child_offset);
continue;
}
}
PROGRAM_NEXT_INSTRUCTION
}
}

View File

@ -49,6 +49,7 @@
#include "rose_internal.h"
#include "rose_program.h"
#include "hwlm/hwlm.h" /* engine types */
#include "hwlm/hwlm_build.h"
#include "hwlm/hwlm_literal.h"
#include "nfa/castlecompile.h"
#include "nfa/goughcompile.h"
@ -2803,7 +2804,7 @@ vector<LitFragment> groupByFragment(const RoseBuildImpl &build) {
auto groups = info.group_mask;
if (lit.s.length() < ROSE_SHORT_LITERAL_LEN_MAX) {
fragments.emplace_back(frag_id, groups, lit_id);
fragments.emplace_back(frag_id, lit.s, groups, lit_id);
frag_id++;
continue;
}
@ -2816,10 +2817,11 @@ vector<LitFragment> groupByFragment(const RoseBuildImpl &build) {
}
for (auto &m : frag_info) {
auto &lit = m.first;
auto &fi = m.second;
DEBUG_PRINTF("frag %s -> ids: %s\n", dumpString(m.first.s).c_str(),
as_string_list(fi.lit_ids).c_str());
fragments.emplace_back(frag_id, fi.groups, move(fi.lit_ids));
fragments.emplace_back(frag_id, lit.s, fi.groups, move(fi.lit_ids));
frag_id++;
assert(frag_id == fragments.size());
}
@ -2827,33 +2829,181 @@ vector<LitFragment> groupByFragment(const RoseBuildImpl &build) {
return fragments;
}
static
void buildIncludedIdMap(unordered_map<u32, pair<u32, u8>> &includedIdMap,
const LitProto *litProto) {
if (!litProto) {
return;
}
const auto &proto = *litProto->hwlmProto;
for (const auto &lit : proto.lits) {
if (lit.included_id != INVALID_LIT_ID) {
includedIdMap[lit.id] = make_pair(lit.included_id, lit.squash);
}
}
}
static
void findInclusionGroups(vector<LitFragment> &fragments,
LitProto *fproto, LitProto *drproto,
LitProto *eproto, LitProto *sbproto) {
unordered_map<u32, pair<u32, u8>> includedIdMap;
unordered_map<u32, pair<u32, u8>> includedDelayIdMap;
buildIncludedIdMap(includedIdMap, fproto);
buildIncludedIdMap(includedDelayIdMap, drproto);
buildIncludedIdMap(includedIdMap, eproto);
buildIncludedIdMap(includedIdMap, sbproto);
size_t fragNum = fragments.size();
vector<u32> candidates;
for (size_t j = 0; j < fragNum; j++) {
DEBUG_PRINTF("frag id %lu\n", j);
u32 id = j;
if (contains(includedIdMap, id) ||
contains(includedDelayIdMap, id)) {
candidates.push_back(j);
DEBUG_PRINTF("find candidate\n");
}
}
for (const auto &c : candidates) {
auto &frag = fragments[c];
u32 id = c;
if (contains(includedIdMap, id)) {
const auto &childId = includedIdMap[id];
frag.included_frag_id = childId.first;
frag.squash = childId.second;
DEBUG_PRINTF("frag id %u child frag id %u\n", c,
frag.included_frag_id);
}
if (contains(includedDelayIdMap, id)) {
const auto &childId = includedDelayIdMap[id];
frag.included_delay_frag_id = childId.first;
frag.delay_squash = childId.second;
DEBUG_PRINTF("delay frag id %u child frag id %u\n", c,
frag.included_delay_frag_id);
}
}
}
static
void buildFragmentPrograms(const RoseBuildImpl &build,
vector<LitFragment> &fragments,
build_context &bc, ProgramBuild &prog_build,
const map<u32, vector<RoseEdge>> &lit_edge_map) {
// Sort fragments based on literal length and case info to build
// included literal programs before their parent programs.
vector<LitFragment> ordered_fragments(fragments);
stable_sort(begin(ordered_fragments), end(ordered_fragments),
[](const LitFragment &a, const LitFragment &b) {
auto len1 = a.s.length();
auto caseful1 = !a.s.any_nocase();
auto len2 = b.s.length();
auto caseful2 = !b.s.any_nocase();
return tie(len1, caseful1) < tie(len2, caseful2);
});
for (auto &frag : ordered_fragments) {
auto &pfrag = fragments[frag.fragment_id];
DEBUG_PRINTF("frag_id=%u, lit_ids=[%s]\n", pfrag.fragment_id,
as_string_list(pfrag.lit_ids).c_str());
auto lit_prog = makeFragmentProgram(build, bc, prog_build,
pfrag.lit_ids, lit_edge_map);
if (pfrag.included_frag_id != INVALID_FRAG_ID &&
!lit_prog.empty()) {
auto &cfrag = fragments[pfrag.included_frag_id];
assert(pfrag.s.length() >= cfrag.s.length() &&
!pfrag.s.any_nocase() >= !cfrag.s.any_nocase());
u32 child_offset = cfrag.lit_program_offset;
DEBUG_PRINTF("child %u offset %u\n", cfrag.fragment_id,
child_offset);
addIncludedJumpProgram(lit_prog, child_offset, pfrag.squash);
}
pfrag.lit_program_offset = writeProgram(bc, move(lit_prog));
// We only do delayed rebuild in streaming mode.
if (!build.cc.streaming) {
continue;
}
auto rebuild_prog = makeDelayRebuildProgram(build, prog_build,
pfrag.lit_ids);
if (pfrag.included_delay_frag_id != INVALID_FRAG_ID &&
!rebuild_prog.empty()) {
auto &cfrag = fragments[pfrag.included_delay_frag_id];
assert(pfrag.s.length() >= cfrag.s.length() &&
!pfrag.s.any_nocase() >= !cfrag.s.any_nocase());
u32 child_offset = cfrag.delay_program_offset;
DEBUG_PRINTF("child %u offset %u\n", cfrag.fragment_id,
child_offset);
addIncludedJumpProgram(rebuild_prog, child_offset,
pfrag.delay_squash);
}
pfrag.delay_program_offset = writeProgram(bc, move(rebuild_prog));
}
}
static
void updateLitProtoProgramOffset(vector<LitFragment> &fragments,
LitProto &litProto, bool delay) {
auto &proto = *litProto.hwlmProto;
for (auto &lit : proto.lits) {
auto fragId = lit.id;
auto &frag = fragments[fragId];
if (delay) {
DEBUG_PRINTF("delay_program_offset:%u\n",
frag.delay_program_offset);
lit.id = frag.delay_program_offset;
} else {
DEBUG_PRINTF("lit_program_offset:%u\n",
frag.lit_program_offset);
lit.id = frag.lit_program_offset;
}
}
}
static
void updateLitProgramOffset(vector<LitFragment> &fragments,
LitProto *fproto, LitProto *drproto,
LitProto *eproto, LitProto *sbproto) {
if (fproto) {
updateLitProtoProgramOffset(fragments, *fproto, false);
}
if (drproto) {
updateLitProtoProgramOffset(fragments, *drproto, true);
}
if (eproto) {
updateLitProtoProgramOffset(fragments, *eproto, false);
}
if (sbproto) {
updateLitProtoProgramOffset(fragments, *sbproto, false);
}
}
/**
* \brief Build the interpreter programs for each literal.
*/
static
void buildLiteralPrograms(const RoseBuildImpl &build,
vector<LitFragment> &fragments, build_context &bc,
ProgramBuild &prog_build) {
ProgramBuild &prog_build, LitProto *fproto,
LitProto *drproto, LitProto *eproto,
LitProto *sbproto) {
DEBUG_PRINTF("%zu fragments\n", fragments.size());
auto lit_edge_map = findEdgesByLiteral(build);
for (auto &frag : fragments) {
DEBUG_PRINTF("frag_id=%u, lit_ids=[%s]\n", frag.fragment_id,
as_string_list(frag.lit_ids).c_str());
findInclusionGroups(fragments, fproto, drproto, eproto, sbproto);
auto lit_prog = makeFragmentProgram(build, bc, prog_build, frag.lit_ids,
lit_edge_map);
frag.lit_program_offset = writeProgram(bc, move(lit_prog));
buildFragmentPrograms(build, fragments, bc, prog_build, lit_edge_map);
// We only do delayed rebuild in streaming mode.
if (!build.cc.streaming) {
continue;
}
auto rebuild_prog = makeDelayRebuildProgram(build, prog_build,
frag.lit_ids);
frag.delay_program_offset = writeProgram(bc, move(rebuild_prog));
}
// update literal program offsets for literal matcher prototypes
updateLitProgramOffset(fragments, fproto, drproto, eproto, sbproto);
}
/**
@ -3470,7 +3620,24 @@ bytecode_ptr<RoseEngine> RoseBuildImpl::buildFinalEngine(u32 minWidth) {
tie(proto.delayProgramOffset, proto.delay_count) =
writeDelayPrograms(*this, fragments, bc, prog_build);
buildLiteralPrograms(*this, fragments, bc, prog_build);
// Build floating HWLM matcher prototype.
rose_group fgroups = 0;
auto fproto = buildFloatingMatcherProto(*this, fragments,
longLitLengthThreshold,
&fgroups, &historyRequired);
// Build delay rebuild HWLM matcher prototype.
auto drproto = buildDelayRebuildMatcherProto(*this, fragments,
longLitLengthThreshold);
// Build EOD-anchored HWLM matcher prototype.
auto eproto = buildEodAnchoredMatcherProto(*this, fragments);
// Build small-block HWLM matcher prototype.
auto sbproto = buildSmallBlockMatcherProto(*this, fragments);
buildLiteralPrograms(*this, fragments, bc, prog_build, fproto.get(),
drproto.get(), eproto.get(), sbproto.get());
auto eod_prog = makeEodProgram(*this, bc, prog_build, eodNfaIterOffset);
proto.eodProgramOffset = writeProgram(bc, move(eod_prog));
@ -3497,29 +3664,26 @@ bytecode_ptr<RoseEngine> RoseBuildImpl::buildFinalEngine(u32 minWidth) {
}
// Build floating HWLM matcher.
rose_group fgroups = 0;
auto ftable = buildFloatingMatcher(*this, fragments, longLitLengthThreshold,
&fgroups, &historyRequired);
auto ftable = buildHWLMMatcher(*this, fproto.get());
if (ftable) {
proto.fmatcherOffset = bc.engine_blob.add(ftable);
bc.resources.has_floating = true;
}
// Build delay rebuild HWLM matcher.
auto drtable = buildDelayRebuildMatcher(*this, fragments,
longLitLengthThreshold);
auto drtable = buildHWLMMatcher(*this, drproto.get());
if (drtable) {
proto.drmatcherOffset = bc.engine_blob.add(drtable);
}
// Build EOD-anchored HWLM matcher.
auto etable = buildEodAnchoredMatcher(*this, fragments);
auto etable = buildHWLMMatcher(*this, eproto.get());
if (etable) {
proto.ematcherOffset = bc.engine_blob.add(etable);
}
// Build small-block HWLM matcher.
auto sbtable = buildSmallBlockMatcher(*this, fragments);
auto sbtable = buildHWLMMatcher(*this, sbproto.get());
if (sbtable) {
proto.sbmatcherOffset = bc.engine_blob.add(sbtable);
}

View File

@ -1463,6 +1463,12 @@ void dumpProgram(ofstream &os, const RoseEngine *t, const char *pc) {
}
PROGRAM_NEXT_INSTRUCTION
PROGRAM_CASE(INCLUDED_JUMP) {
os << " child_offset " << ri->child_offset << endl;
os << " squash " << ri->squash << endl;
}
PROGRAM_NEXT_INSTRUCTION
default:
os << " UNKNOWN (code " << int{code} << ")" << endl;
os << " <stopping>" << endl;

View File

@ -636,4 +636,12 @@ void RoseInstrCheckMultipathShufti64::write(void *dest, RoseEngineBlob &blob,
inst->fail_jump = calc_jump(offset_map, this, target);
}
void RoseInstrIncludedJump::write(void *dest, RoseEngineBlob &blob,
const OffsetMap &offset_map) const {
RoseInstrBase::write(dest, blob, offset_map);
auto *inst = static_cast<impl_type *>(dest);
inst->child_offset = child_offset;
inst->squash = squash;
}
}

View File

@ -2121,6 +2121,34 @@ public:
}
};
class RoseInstrIncludedJump
: public RoseInstrBaseNoTargets<ROSE_INSTR_INCLUDED_JUMP,
ROSE_STRUCT_INCLUDED_JUMP,
RoseInstrIncludedJump> {
public:
u32 child_offset;
u8 squash;
RoseInstrIncludedJump(u32 child_offset_in, u8 squash_in)
: child_offset(child_offset_in), squash(squash_in) {}
bool operator==(const RoseInstrIncludedJump &ri) const {
return child_offset == ri.child_offset && squash == ri.squash;
}
size_t hash() const override {
return hash_all(static_cast<int>(opcode), child_offset, squash);
}
void write(void *dest, RoseEngineBlob &blob,
const OffsetMap &offset_map) const override;
bool equiv_to(const RoseInstrIncludedJump &ri, const OffsetMap &,
const OffsetMap &) const {
return child_offset == ri.child_offset && squash == ri.squash;
}
};
class RoseInstrEnd
: public RoseInstrBaseTrivial<ROSE_INSTR_END, ROSE_STRUCT_END,
RoseInstrEnd> {

View File

@ -46,6 +46,7 @@
#include "util/compile_context.h"
#include "util/compile_error.h"
#include "util/dump_charclass.h"
#include "util/make_unique.h"
#include "util/report.h"
#include "util/report_manager.h"
#include "util/verify_types.h"
@ -699,8 +700,7 @@ struct MatcherProto {
static
void addFragmentLiteral(const RoseBuildImpl &build, MatcherProto &mp,
const LitFragment &f, u32 id, bool delay_rebuild,
size_t max_len) {
const LitFragment &f, u32 id, size_t max_len) {
const rose_literal_id &lit = build.literals.at(id);
DEBUG_PRINTF("lit='%s' (len %zu)\n", dumpString(lit.s).c_str(),
@ -737,12 +737,10 @@ void addFragmentLiteral(const RoseBuildImpl &build, MatcherProto &mp,
return;
}
u32 prog_offset =
delay_rebuild ? f.delay_program_offset : f.lit_program_offset;
const auto &groups = f.groups;
mp.lits.emplace_back(move(s_final), nocase, noruns, prog_offset, groups,
msk, cmp);
mp.lits.emplace_back(move(s_final), nocase, noruns, f.fragment_id,
groups, msk, cmp);
}
static
@ -837,8 +835,7 @@ MatcherProto makeMatcherProto(const RoseBuildImpl &build,
}
// Build our fragment (for the HWLM matcher) from the first literal.
addFragmentLiteral(build, mp, f, used_lit_ids.front(), delay_rebuild,
max_len);
addFragmentLiteral(build, mp, f, used_lit_ids.front(), max_len);
for (u32 id : used_lit_ids) {
const rose_literal_id &lit = build.literals.at(id);
@ -876,8 +873,8 @@ void MatcherProto::insert(const MatcherProto &a) {
}
static
void buildAccel(const RoseBuildImpl &build, const MatcherProto &mp,
HWLM &hwlm) {
void buildAccel(const RoseBuildImpl &build,
const vector<AccelString> &accel_lits, HWLM &hwlm) {
if (!build.cc.grey.hamsterAccelForward) {
return;
}
@ -886,49 +883,68 @@ void buildAccel(const RoseBuildImpl &build, const MatcherProto &mp,
return;
}
buildForwardAccel(&hwlm, mp.accel_lits, build.getInitialGroups());
buildForwardAccel(&hwlm, accel_lits, build.getInitialGroups());
}
bytecode_ptr<HWLM> buildFloatingMatcher(const RoseBuildImpl &build,
const vector<LitFragment> &fragments,
size_t longLitLengthThreshold,
rose_group *fgroups,
size_t *historyRequired) {
*fgroups = 0;
auto mp = makeMatcherProto(build, fragments, ROSE_FLOATING, false,
longLitLengthThreshold);
if (mp.lits.empty()) {
DEBUG_PRINTF("empty floating matcher\n");
bytecode_ptr<HWLM>
buildHWLMMatcher(const RoseBuildImpl &build, LitProto *litProto) {
if (!litProto) {
return nullptr;
}
dumpMatcherLiterals(mp.lits, "floating", build.cc.grey);
for (const hwlmLiteral &lit : mp.lits) {
*fgroups |= lit.groups;
}
auto hwlm = hwlmBuild(mp.lits, false, build.cc, build.getInitialGroups());
auto hwlm = hwlmBuild(*litProto->hwlmProto, build.cc,
build.getInitialGroups());
if (!hwlm) {
throw CompileError("Unable to generate bytecode.");
}
buildAccel(build, mp, *hwlm);
buildAccel(build, litProto->accel_lits, *hwlm);
if (build.cc.streaming) {
DEBUG_PRINTF("history_required=%zu\n", mp.history_required);
assert(mp.history_required <= build.cc.grey.maxHistoryAvailable);
*historyRequired = max(*historyRequired, mp.history_required);
}
DEBUG_PRINTF("built floating literal table size %zu bytes\n", hwlm.size());
DEBUG_PRINTF("built eod-anchored literal table size %zu bytes\n",
hwlm.size());
return hwlm;
}
bytecode_ptr<HWLM>
buildDelayRebuildMatcher(const RoseBuildImpl &build,
const vector<LitFragment> &fragments,
size_t longLitLengthThreshold) {
unique_ptr<LitProto>
buildFloatingMatcherProto(const RoseBuildImpl &build,
const vector<LitFragment> &fragments,
size_t longLitLengthThreshold,
rose_group *fgroups,
size_t *historyRequired) {
DEBUG_PRINTF("Floating literal matcher\n");
*fgroups = 0;
auto mp = makeMatcherProto(build, fragments, ROSE_FLOATING, false,
longLitLengthThreshold);
if (mp.lits.empty()) {
DEBUG_PRINTF("empty floating matcher\n");
return nullptr;
}
dumpMatcherLiterals(mp.lits, "floating", build.cc.grey);
for (const hwlmLiteral &lit : mp.lits) {
*fgroups |= lit.groups;
}
if (build.cc.streaming) {
DEBUG_PRINTF("history_required=%zu\n", mp.history_required);
assert(mp.history_required <= build.cc.grey.maxHistoryAvailable);
*historyRequired = max(*historyRequired, mp.history_required);
}
auto proto = hwlmBuildProto(mp.lits, false, build.cc);
if (!proto) {
throw CompileError("Unable to generate literal matcher proto.");
}
return ue2::make_unique<LitProto>(move(proto), mp.accel_lits);
}
unique_ptr<LitProto>
buildDelayRebuildMatcherProto(const RoseBuildImpl &build,
const vector<LitFragment> &fragments,
size_t longLitLengthThreshold) {
DEBUG_PRINTF("Delay literal matcher\n");
if (!build.cc.streaming) {
DEBUG_PRINTF("not streaming\n");
return nullptr;
@ -942,20 +958,20 @@ buildDelayRebuildMatcher(const RoseBuildImpl &build,
}
dumpMatcherLiterals(mp.lits, "delay_rebuild", build.cc.grey);
auto hwlm = hwlmBuild(mp.lits, false, build.cc, build.getInitialGroups());
if (!hwlm) {
throw CompileError("Unable to generate bytecode.");
auto proto = hwlmBuildProto(mp.lits, false, build.cc);
if (!proto) {
throw CompileError("Unable to generate literal matcher proto.");
}
buildAccel(build, mp, *hwlm);
DEBUG_PRINTF("built delay rebuild table size %zu bytes\n", hwlm.size());
return hwlm;
return ue2::make_unique<LitProto>(move(proto), mp.accel_lits);
}
bytecode_ptr<HWLM>
buildSmallBlockMatcher(const RoseBuildImpl &build,
const vector<LitFragment> &fragments) {
unique_ptr<LitProto>
buildSmallBlockMatcherProto(const RoseBuildImpl &build,
const vector<LitFragment> &fragments) {
DEBUG_PRINTF("Small block literal matcher\n");
if (build.cc.streaming) {
DEBUG_PRINTF("streaming mode\n");
return nullptr;
@ -1000,21 +1016,19 @@ buildSmallBlockMatcher(const RoseBuildImpl &build,
return nullptr;
}
auto hwlm = hwlmBuild(mp.lits, true, build.cc, build.getInitialGroups());
if (!hwlm) {
throw CompileError("Unable to generate bytecode.");
auto proto = hwlmBuildProto(mp.lits, false, build.cc);
if (!proto) {
throw CompileError("Unable to generate literal matcher proto.");
}
buildAccel(build, mp, *hwlm);
DEBUG_PRINTF("built small block literal table size %zu bytes\n",
hwlm.size());
return hwlm;
return ue2::make_unique<LitProto>(move(proto), mp.accel_lits);
}
bytecode_ptr<HWLM>
buildEodAnchoredMatcher(const RoseBuildImpl &build,
const vector<LitFragment> &fragments) {
unique_ptr<LitProto>
buildEodAnchoredMatcherProto(const RoseBuildImpl &build,
const vector<LitFragment> &fragments) {
DEBUG_PRINTF("Eod anchored literal matcher\n");
auto mp = makeMatcherProto(build, fragments, ROSE_EOD_ANCHORED, false,
build.ematcher_region_size);
@ -1027,16 +1041,13 @@ buildEodAnchoredMatcher(const RoseBuildImpl &build,
assert(build.ematcher_region_size);
auto hwlm = hwlmBuild(mp.lits, true, build.cc, build.getInitialGroups());
if (!hwlm) {
throw CompileError("Unable to generate bytecode.");
auto proto = hwlmBuildProto(mp.lits, false, build.cc);
if (!proto) {
throw CompileError("Unable to generate literal matcher proto.");
}
buildAccel(build, mp, *hwlm);
DEBUG_PRINTF("built eod-anchored literal table size %zu bytes\n",
hwlm.size());
return hwlm;
return ue2::make_unique<LitProto>(move(proto), mp.accel_lits);
}
} // namespace ue2

View File

@ -35,7 +35,10 @@
#define ROSE_BUILD_MATCHERS_H
#include "rose_build_impl.h"
#include "rose_build_lit_accel.h"
#include "hwlm/hwlm_build.h"
#include "util/bytecode_ptr.h"
#include "util/ue2string.h"
#include <vector>
@ -44,38 +47,80 @@ struct HWLM;
namespace ue2 {
static constexpr u32 INVALID_FRAG_ID = ~0U;
struct LitFragment {
LitFragment(u32 fragment_id_in, rose_group groups_in, u32 lit_id)
: fragment_id(fragment_id_in), groups(groups_in), lit_ids({lit_id}) {}
LitFragment(u32 fragment_id_in, rose_group groups_in,
std::vector<u32> lit_ids_in)
: fragment_id(fragment_id_in), groups(groups_in),
lit_ids(std::move(lit_ids_in)) {}
LitFragment(u32 fragment_id_in, ue2_literal s_in,
rose_group groups_in, u32 lit_id)
: fragment_id(fragment_id_in), s(s_in), groups(groups_in),
lit_ids({lit_id}) {}
LitFragment(u32 fragment_id_in, ue2_literal s_in,
rose_group groups_in, std::vector<u32> lit_ids_in)
: fragment_id(fragment_id_in), s(s_in), groups(groups_in),
lit_ids(std::move(lit_ids_in)) {}
u32 fragment_id;
/**
* \brief literal fragment.
*/
ue2_literal s;
/**
* \brief FDR confirm squash mask for included literals.
*/
u8 squash;
/**
* \brief FDR confirm squash mask for included literals (Delayed
* literals only).
*/
u8 delay_squash;
/**
* \brief Fragment id of included literal.
*/
u32 included_frag_id = INVALID_FRAG_ID;
/**
* \brief Fragment Id of included literal (Delayed literals only).
*/
u32 included_delay_frag_id = INVALID_FRAG_ID;
rose_group groups;
std::vector<u32> lit_ids;
u32 lit_program_offset = ROSE_INVALID_PROG_OFFSET;
u32 delay_program_offset = ROSE_INVALID_PROG_OFFSET;
};
bytecode_ptr<HWLM>
buildFloatingMatcher(const RoseBuildImpl &build,
const std::vector<LitFragment> &fragments,
size_t longLitLengthThreshold, rose_group *fgroups,
size_t *historyRequired);
struct LitProto {
LitProto(std::unique_ptr<HWLMProto> hwlmProto_in,
std::vector<AccelString> &accel_lits_in)
: hwlmProto(std::move(hwlmProto_in)), accel_lits(accel_lits_in) {}
std::unique_ptr<HWLMProto> hwlmProto;
std::vector<AccelString> accel_lits;
};
bytecode_ptr<HWLM>
buildDelayRebuildMatcher(const RoseBuildImpl &build,
const std::vector<LitFragment> &fragments,
size_t longLitLengthThreshold);
buildHWLMMatcher(const RoseBuildImpl &build, LitProto *proto);
bytecode_ptr<HWLM>
buildSmallBlockMatcher(const RoseBuildImpl &build,
const std::vector<LitFragment> &fragments);
std::unique_ptr<LitProto>
buildFloatingMatcherProto(const RoseBuildImpl &build,
const std::vector<LitFragment> &fragments,
size_t longLitLengthThreshold,
rose_group *fgroups,
size_t *historyRequired);
bytecode_ptr<HWLM>
buildEodAnchoredMatcher(const RoseBuildImpl &build,
const std::vector<LitFragment> &fragments);
std::unique_ptr<LitProto>
buildDelayRebuildMatcherProto(const RoseBuildImpl &build,
const std::vector<LitFragment> &fragments,
size_t longLitLengthThreshold);
std::unique_ptr<LitProto>
buildSmallBlockMatcherProto(const RoseBuildImpl &build,
const std::vector<LitFragment> &fragments);
std::unique_ptr<LitProto>
buildEodAnchoredMatcherProto(const RoseBuildImpl &build,
const std::vector<LitFragment> &fragments);
void findMoreLiteralMasks(RoseBuildImpl &build);

View File

@ -2164,6 +2164,14 @@ RoseProgram makeBoundaryProgram(const RoseBuildImpl &build,
return prog;
}
void addIncludedJumpProgram(RoseProgram &program, u32 child_offset,
u8 squash) {
RoseProgram block;
block.add_before_end(make_unique<RoseInstrIncludedJump>(child_offset,
squash));
program.add_block(move(block));
}
static
void addPredBlockSingle(u32 pred_state, RoseProgram &pred_block,
RoseProgram &program) {

View File

@ -282,6 +282,7 @@ void recordLongLiterals(std::vector<ue2_case_string> &longLiterals,
void recordResources(RoseResources &resources, const RoseProgram &program);
void addIncludedJumpProgram(RoseProgram &program, u32 child_offset, u8 squash);
} // namespace ue2
#endif // ROSE_BUILD_PROGRAM_H

View File

@ -178,7 +178,12 @@ enum RoseInstructionCode {
*/
ROSE_INSTR_CHECK_MULTIPATH_SHUFTI_64,
LAST_ROSE_INSTRUCTION = ROSE_INSTR_CHECK_MULTIPATH_SHUFTI_64 //!< Sentinel.
/**
* \brief Jump to the program of included literal.
*/
ROSE_INSTR_INCLUDED_JUMP,
LAST_ROSE_INSTRUCTION = ROSE_INSTR_INCLUDED_JUMP //!< Sentinel.
};
struct ROSE_STRUCT_END {
@ -625,4 +630,10 @@ struct ROSE_STRUCT_CHECK_MULTIPATH_SHUFTI_64 {
s32 last_start; //!< The latest start offset among 8 paths.
u32 fail_jump; //!< Jump forward this many bytes on failure.
};
struct ROSE_STRUCT_INCLUDED_JUMP {
u8 code; //!< From enum RoseInstructionCode.
u8 squash; //!< FDR confirm squash mask for included literal.
u32 child_offset; //!< Program offset of included literal.
};
#endif // ROSE_ROSE_PROGRAM_H

View File

@ -136,6 +136,7 @@ hs_error_t alloc_scratch(const hs_scratch_t *proto, hs_scratch_t **scratch) {
s->in_use = 0;
s->scratchSize = alloc_size;
s->scratch_alloc = (char *)s_tmp;
s->fdr_conf = NULL;
// each of these is at an offset from the previous
char *current = (char *)s + sizeof(*s);

View File

@ -200,6 +200,9 @@ struct ALIGN_CL_DIRECTIVE hs_scratch {
u32 delay_fatbit_size; /**< size of each delay fatbit in bytes */
u32 scratchSize;
char *scratch_alloc; /* user allocated scratch object */
u64a *fdr_conf; /**< FDR confirm value */
u8 fdr_conf_offset; /**< offset where FDR/Teddy front end matches
* in buffer */
};
/* array of fatbit ptr; TODO: why not an array of fatbits? */

View File

@ -36,6 +36,7 @@
#include "fdr/fdr_engine_description.h"
#include "fdr/teddy_compile.h"
#include "fdr/teddy_engine_description.h"
#include "hwlm/hwlm_internal.h"
#include "util/alloc.h"
#include "database.h"
@ -135,6 +136,31 @@ vector<u32> getValidFdrEngines() {
return ret;
}
static
bytecode_ptr<FDR> buildFDREngineHinted(std::vector<hwlmLiteral> &lits,
bool make_small, u32 hint,
const target_t &target,
const Grey &grey) {
auto proto = fdrBuildProtoHinted(HWLM_ENGINE_FDR, lits, make_small, hint,
target, grey);
if (!proto) {
return nullptr;
}
return fdrBuildTable(*proto, grey);
}
static
bytecode_ptr<FDR> buildFDREngine(std::vector<hwlmLiteral> &lits,
bool make_small, const target_t &target,
const Grey &grey) {
auto proto = fdrBuildProto(HWLM_ENGINE_FDR, lits, make_small, target, grey);
if (!proto) {
return nullptr;
}
return fdrBuildTable(*proto, grey);
}
class FDRp : public TestWithParam<u32> {
};
@ -147,10 +173,12 @@ TEST_P(FDRp, Simple) {
vector<hwlmLiteral> lits;
lits.push_back(hwlmLiteral("mnopqr", 0, 0));
auto fdr = fdrBuildTableHinted(lits, false, hint, get_current_target(), Grey());
auto fdr = buildFDREngineHinted(lits, false, hint, get_current_target(),
Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
struct hs_scratch scratch;
scratch.fdr_conf = NULL;
fdrExec(fdr.get(), (const u8 *)data, sizeof(data), 0, decentCallback,
&scratch, HWLM_ALL_GROUPS);
@ -170,10 +198,12 @@ TEST_P(FDRp, SimpleSingle) {
vector<hwlmLiteral> lits;
lits.push_back(hwlmLiteral("m", 0, 0));
auto fdr = fdrBuildTableHinted(lits, false, hint, get_current_target(), Grey());
auto fdr = buildFDREngineHinted(lits, false, hint, get_current_target(),
Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
struct hs_scratch scratch;
scratch.fdr_conf = NULL;
fdrExec(fdr.get(), (const u8 *)data, sizeof(data) - 1 /* skip nul */, 0,
decentCallback, &scratch, HWLM_ALL_GROUPS);
@ -192,7 +222,8 @@ TEST_P(FDRp, MultiLocation) {
vector<hwlmLiteral> lits;
lits.push_back(hwlmLiteral("abc", 0, 1));
auto fdr = fdrBuildTableHinted(lits, false, hint, get_current_target(), Grey());
auto fdr = buildFDREngineHinted(lits, false, hint, get_current_target(),
Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
const u32 testSize = 128;
@ -200,6 +231,7 @@ TEST_P(FDRp, MultiLocation) {
vector<u8> data(testSize, 0);
struct hs_scratch scratch;
scratch.fdr_conf = NULL;
for (u32 i = 0; i < testSize - 3; i++) {
memcpy(data.data() + i, "abc", 3);
fdrExec(fdr.get(), data.data(), testSize, 0, decentCallback, &scratch,
@ -220,10 +252,12 @@ TEST_P(FDRp, NoRepeat1) {
vector<hwlmLiteral> lits
= { hwlmLiteral("m", 0, 1, 0, HWLM_ALL_GROUPS, {}, {}) };
auto fdr = fdrBuildTableHinted(lits, false, hint, get_current_target(), Grey());
auto fdr = buildFDREngineHinted(lits, false, hint, get_current_target(),
Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
struct hs_scratch scratch;
scratch.fdr_conf = NULL;
fdrExec(fdr.get(), (const u8 *)data, sizeof(data) - 1 /* skip nul */, 0,
decentCallback, &scratch, HWLM_ALL_GROUPS);
@ -242,10 +276,12 @@ TEST_P(FDRp, NoRepeat2) {
= { hwlmLiteral("m", 0, 1, 0, HWLM_ALL_GROUPS, {}, {}),
hwlmLiteral("A", 0, 42) };
auto fdr = fdrBuildTableHinted(lits, false, hint, get_current_target(), Grey());
auto fdr = buildFDREngineHinted(lits, false, hint, get_current_target(),
Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
struct hs_scratch scratch;
scratch.fdr_conf = NULL;
fdrExec(fdr.get(), (const u8 *)data, sizeof(data) - 1 /* skip nul */, 0,
decentCallback, &scratch, HWLM_ALL_GROUPS);
@ -265,10 +301,12 @@ TEST_P(FDRp, NoRepeat3) {
= { hwlmLiteral("90m", 0, 1, 0, HWLM_ALL_GROUPS, {}, {}),
hwlmLiteral("zA", 0, 1, 0, HWLM_ALL_GROUPS, {}, {}) };
auto fdr = fdrBuildTableHinted(lits, false, hint, get_current_target(), Grey());
auto fdr = buildFDREngineHinted(lits, false, hint, get_current_target(),
Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
struct hs_scratch scratch;
scratch.fdr_conf = NULL;
fdrExec(fdr.get(), (const u8 *)data, sizeof(data) - 1 /* skip nul */, 0,
decentCallback, &scratch, HWLM_ALL_GROUPS);
@ -293,6 +331,7 @@ hwlm_error_t safeExecStreaming(const FDR *fdr, const u8 *hbuf, size_t hlen,
hbuf = new_hbuf;
}
struct hs_scratch scratch;
scratch.fdr_conf = NULL;
return fdrExecStreaming(fdr, hbuf, hlen, buf, len, start, cb, &scratch,
groups);
}
@ -304,7 +343,8 @@ TEST_P(FDRp, SmallStreaming) {
vector<hwlmLiteral> lits = {hwlmLiteral("a", 1, 1),
hwlmLiteral("aardvark", 0, 10)};
auto fdr = fdrBuildTableHinted(lits, false, hint, get_current_target(), Grey());
auto fdr = buildFDREngineHinted(lits, false, hint, get_current_target(),
Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
vector<match> expected;
@ -342,7 +382,8 @@ TEST_P(FDRp, SmallStreaming2) {
hwlmLiteral("kk", 1, 2),
hwlmLiteral("aardvark", 0, 10)};
auto fdr = fdrBuildTableHinted(lits, false, hint, get_current_target(), Grey());
auto fdr = buildFDREngineHinted(lits, false, hint, get_current_target(),
Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
vector<match> expected;
@ -373,7 +414,8 @@ TEST_P(FDRp, moveByteStream) {
vector<hwlmLiteral> lits;
lits.push_back(hwlmLiteral("mnopqr", 0, 0));
auto fdrTable0 = fdrBuildTableHinted(lits, false, hint, get_current_target(), Grey());
auto fdrTable0 = buildFDREngineHinted(lits, false, hint,
get_current_target(), Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdrTable0, hint);
size_t size = fdrSize(fdrTable0.get());
@ -390,6 +432,7 @@ TEST_P(FDRp, moveByteStream) {
// check matches
struct hs_scratch scratch;
scratch.fdr_conf = NULL;
hwlm_error_t fdrStatus = fdrExec(fdrTable.get(), (const u8 *)data,
data_len, 0, decentCallback, &scratch,
@ -414,7 +457,8 @@ TEST_P(FDRp, Stream1) {
lits.push_back(hwlmLiteral("f", 0, 0));
lits.push_back(hwlmLiteral("literal", 0, 1));
auto fdr = fdrBuildTableHinted(lits, false, hint, get_current_target(), Grey());
auto fdr = buildFDREngineHinted(lits, false, hint, get_current_target(),
Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
// check matches
@ -470,12 +514,13 @@ TEST_P(FDRpp, AlignAndTooEarly) {
vector<hwlmLiteral> lits;
struct hs_scratch scratch;
scratch.fdr_conf = NULL;
for (size_t litLen = 1; litLen <= patLen; litLen++) {
// building literal from pattern substring of variable length 1-patLen
lits.push_back(hwlmLiteral(string(pattern, 0, litLen), 0, 0));
auto fdr = fdrBuildTableHinted(lits, false, hint, get_current_target(),
Grey());
auto fdr = buildFDREngineHinted(lits, false, hint, get_current_target(),
Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
// check with buffer offset from aligned start from 0 to 31
@ -592,6 +637,7 @@ TEST_P(FDRpa, ShortWritings) {
// run the literal matching through all generated literals
struct hs_scratch scratch;
scratch.fdr_conf = NULL;
for (size_t patIdx = 0; patIdx < pats.size();) {
// group them in the sets of 32
vector<hwlmLiteral> testSigs;
@ -599,8 +645,8 @@ TEST_P(FDRpa, ShortWritings) {
testSigs.push_back(hwlmLiteral(pats[patIdx], false, patIdx));
}
auto fdr = fdrBuildTableHinted(testSigs, false, hint,
get_current_target(), Grey());
auto fdr = buildFDREngineHinted(testSigs, false, hint,
get_current_target(), Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
@ -659,7 +705,7 @@ TEST(FDR, FDRTermS) {
lits.push_back(hwlmLiteral("f", 0, 0));
lits.push_back(hwlmLiteral("ff", 0, 1));
auto fdr = fdrBuildTable(lits, false, get_current_target(), Grey());
auto fdr = buildFDREngine(lits, false, get_current_target(), Grey());
ASSERT_TRUE(fdr != nullptr);
// check matches
@ -682,11 +728,12 @@ TEST(FDR, FDRTermB) {
lits.push_back(hwlmLiteral("f", 0, 0));
lits.push_back(hwlmLiteral("ff", 0, 1));
auto fdr = fdrBuildTable(lits, false, get_current_target(), Grey());
auto fdr = buildFDREngine(lits, false, get_current_target(), Grey());
ASSERT_TRUE(fdr != nullptr);
// check matches
struct hs_scratch scratch;
scratch.fdr_conf = NULL;
fdrStatus = fdrExec(fdr.get(), (const u8 *)data1, data_len1,
0, decentCallbackT, &scratch, HWLM_ALL_GROUPS);

View File

@ -36,6 +36,7 @@
#include "fdr/fdr_engine_description.h"
#include "fdr/teddy_compile.h"
#include "fdr/teddy_engine_description.h"
#include "hwlm/hwlm_internal.h"
#include "scratch.h"
#include "util/alloc.h"
#include "util/bitutils.h"
@ -131,6 +132,16 @@ static vector<u32> getValidFdrEngines() {
return ret;
}
static
bytecode_ptr<FDR> buildFDREngineHinted(std::vector<hwlmLiteral> &lits,
bool make_small, u32 hint,
const target_t &target,
const Grey &grey) {
auto proto = fdrBuildProtoHinted(HWLM_ENGINE_FDR, lits, make_small, hint,
target, grey);
return fdrBuildTable(*proto, grey);
}
class FDRFloodp : public TestWithParam<u32> {
};
@ -142,6 +153,7 @@ TEST_P(FDRFloodp, NoMask) {
u8 c = 0;
struct hs_scratch scratch;
scratch.fdr_conf = NULL;
while (1) {
SCOPED_TRACE((unsigned int)c);
u8 bit = 1 << (c & 0x7);
@ -169,8 +181,8 @@ TEST_P(FDRFloodp, NoMask) {
lits.push_back(hwlmLiteral(sAlt, false, i * 8 + 7));
}
auto fdr = fdrBuildTableHinted(lits, false, hint, get_current_target(),
Grey());
auto fdr = buildFDREngineHinted(lits, false, hint, get_current_target(),
Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
hwlm_error_t fdrStatus = fdrExec(fdr.get(), &data[0], dataSize,
@ -235,6 +247,7 @@ TEST_P(FDRFloodp, WithMask) {
u8 c = '\0';
struct hs_scratch scratch;
scratch.fdr_conf = NULL;
while (1) {
u8 bit = 1 << (c & 0x7);
u8 cAlt = c ^ bit;
@ -305,8 +318,8 @@ TEST_P(FDRFloodp, WithMask) {
HWLM_ALL_GROUPS, msk, cmp));
}
}
auto fdr = fdrBuildTableHinted(lits, false, hint, get_current_target(),
Grey());
auto fdr = buildFDREngineHinted(lits, false, hint, get_current_target(),
Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
hwlm_error_t fdrStatus = fdrExec(fdr.get(), &data[0], dataSize,
@ -400,6 +413,7 @@ TEST_P(FDRFloodp, StreamingMask) {
u8 c = '\0';
struct hs_scratch scratch;
scratch.fdr_conf = NULL;
while (1) {
u8 bit = 1 << (c & 0x7);
u8 cAlt = c ^ bit;
@ -470,8 +484,8 @@ TEST_P(FDRFloodp, StreamingMask) {
HWLM_ALL_GROUPS, msk, cmp));
}
}
auto fdr = fdrBuildTableHinted(lits, false, hint, get_current_target(),
Grey());
auto fdr = buildFDREngineHinted(lits, false, hint, get_current_target(),
Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
hwlm_error_t fdrStatus;