dfa_min: clean up and improve minimize code

This commit is contained in:
Justin Viiret 2017-04-13 16:18:22 +10:00 committed by Matthew Barr
parent 8fdef3f3be
commit 8650a1a33f
2 changed files with 109 additions and 146 deletions

View File

@ -26,12 +26,14 @@
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Build code for DFA minimization
*/
/**
* \file
* \brief Build code for DFA minimization.
*/
/**
* /Summary of the Hopcrofts algorithm/
* /Summary of the Hopcroft minimisation algorithm/
*
* partition := {F, Q \ F};
* work_queue := {F};
* while (work_queue is not empty) do
@ -57,8 +59,7 @@
#include "dfa_min.h"
#include "grey.h"
#include "nfa/rdfa.h"
#include "nfagraph/ng_mcclellan.h"
#include "rdfa.h"
#include "ue2common.h"
#include "util/container.h"
#include "util/noncopyable.h"
@ -67,12 +68,11 @@
#include <algorithm>
#include <functional>
#include <iterator>
#include <map>
#include <queue>
#include <set>
#include <vector>
#include <iterator>
#include <boost/dynamic_bitset.hpp>
using namespace std;
@ -81,30 +81,32 @@ namespace ue2 {
namespace {
struct hopcroft_state_info {
vector<vector<dstate_id_t> > prev;
explicit hopcroft_state_info(size_t alpha_size) : prev(alpha_size) {}
/** \brief Mapping from symbol to a list of predecessors that transition to
* this state on that symbol. */
vector<vector<dstate_id_t>> prev;
};
struct DFA_components : noncopyable {
dstate_id_t nstates;
size_t inp_size;
set<size_t> work_queue;
/*Partition contains reduced states*/
partitioned_set<dstate_id_t> partition;
vector<hopcroft_state_info> states;
struct HopcroftInfo : noncopyable {
size_t alpha_size; //!< Size of DFA alphabet.
queue<size_t> work_queue; //!< Hopcroft work queue of partition indices.
partitioned_set<dstate_id_t> partition; //!< Partition set of DFA states.
vector<hopcroft_state_info> states; //!< Pre-calculated state info (preds)
explicit DFA_components(const raw_dfa &rdfa);
explicit HopcroftInfo(const raw_dfa &rdfa);
};
} //namespace
} // namespace
/**
* create_map:
* Creates an initial partitioning and work_queue.
* \brief Create an initial partitioning and work_queue.
*
* Initial partition contains {accepting states..., Non-accepting states}
* Initial work_queue contains accepting state subsets
*
* The initial partitioning needs to distinguish between the different
* reporting behaviours (unlike standard hopcroft) --> more than one subset
* reporting behaviours (unlike standard Hopcroft) --> more than one subset
* possible for the accepting states.
*
* Look for accepting states in both reports and reports_eod.
@ -114,82 +116,43 @@ struct DFA_components : noncopyable {
* Non Accept states are added to partition[id+1].
*/
static
vector<size_t> create_map(const raw_dfa &rdfa, set<size_t> &work_queue) {
vector<size_t> create_map(const raw_dfa &rdfa, queue<size_t> &work_queue) {
using ReportKey = pair<flat_set<ReportID>, flat_set<ReportID>>;
map<ReportKey, size_t> subset_map;
vector<size_t> state_to_subset(rdfa.states.size(), INVALID_SUBSET);
for (size_t i = 0; i < rdfa.states.size(); i++) {
if (!rdfa.states[i].reports.empty() ||
!rdfa.states[i].reports_eod.empty()) {
ReportKey key(rdfa.states[i].reports, rdfa.states[i].reports_eod);
const auto &ds = rdfa.states[i];
if (!ds.reports.empty() || !ds.reports_eod.empty()) {
ReportKey key(ds.reports, ds.reports_eod);
if (contains(subset_map, key)) {
state_to_subset[i] = subset_map[key];
} else {
size_t sub = subset_map.size();
subset_map[key] = sub;
subset_map.emplace(std::move(key), sub);
state_to_subset[i] = sub;
work_queue.insert(sub);
work_queue.push(sub);
}
}
}
/* handle non accepts */
/* Give non-accept states their own subset. */
size_t non_accept_sub = subset_map.size();
for (size_t i = 0; i < state_to_subset.size(); i++) {
if (state_to_subset[i] == INVALID_SUBSET) {
state_to_subset[i] = non_accept_sub;
}
}
replace(state_to_subset.begin(), state_to_subset.end(), INVALID_SUBSET,
non_accept_sub);
return state_to_subset;
}
DFA_components::DFA_components(const raw_dfa &rdfa)
: nstates(rdfa.states.size()),
inp_size(rdfa.states[nstates - 1].next.size()),
partition(create_map(rdfa, work_queue)) {
/* initializing states */
for (size_t i = 0; i < nstates; i++) {
states.push_back(hopcroft_state_info());
states.back().prev.resize(inp_size);
HopcroftInfo::HopcroftInfo(const raw_dfa &rdfa)
: alpha_size(rdfa.alpha_size), partition(create_map(rdfa, work_queue)),
states(rdfa.states.size(), hopcroft_state_info(alpha_size)) {
/* Construct predecessor lists for each state, indexed by symbol. */
for (size_t i = 0; i < states.size(); i++) { // i is the previous state
for (size_t sym = 0; sym < alpha_size; sym++) {
dstate_id_t present_state = rdfa.states[i].next[sym];
states[present_state].prev[sym].push_back(i);
}
for (size_t i = 0; i < nstates; i++) { // i is the previous state
for (size_t j = 0; j < inp_size; j++) {
/* Creating X_table */
dstate_id_t present_state = rdfa.states[i].next[j];
states[present_state].prev[j].push_back(i);
DEBUG_PRINTF("rdfa.states[%zu].next[%zu] %hu \n", i, j,
rdfa.states[i].next[j]);
}
}
}
/**
* choose and remove a set A from work_queue.
*/
static
void get_work_item(DFA_components &mdfa, ue2::flat_set<dstate_id_t> &A) {
A.clear();
assert(!mdfa.work_queue.empty());
set<size_t>::iterator pt = mdfa.work_queue.begin();
insert(&A, mdfa.partition[*pt]);
mdfa.work_queue.erase(pt);
}
/**
* X is the set of states for which a transition on the input leads to a state
* in A.
*/
static
void create_X(const DFA_components &mdfa, const ue2::flat_set<dstate_id_t> &A,
size_t inp, ue2::flat_set<dstate_id_t> &X) {
X.clear();
for (dstate_id_t id : A) {
insert(&X, mdfa.states[id].prev[inp]);
}
}
@ -206,14 +169,14 @@ void create_X(const DFA_components &mdfa, const ue2::flat_set<dstate_id_t> &A,
* - replace S in work_queue by the smaller of the two sets.
*/
static
void split_and_replace_set(const size_t part_index, DFA_components &mdfa,
const ue2::flat_set<dstate_id_t> &splitter) {
void split_and_replace_set(const size_t part_index, HopcroftInfo &info,
const flat_set<dstate_id_t> &splitter) {
/* singleton sets cannot be split */
if (mdfa.partition[part_index].size() == 1) {
if (info.partition[part_index].size() == 1) {
return;
}
size_t small_index = mdfa.partition.split(part_index, splitter);
size_t small_index = info.partition.split(part_index, splitter);
if (small_index == INVALID_SUBSET) {
/* the set could not be split */
@ -223,54 +186,56 @@ void split_and_replace_set(const size_t part_index, DFA_components &mdfa,
/* larger subset remains at the input subset index, if the input subset was
* already in the work queue then the larger subset will remain there. */
mdfa.work_queue.insert(small_index);
info.work_queue.push(small_index);
}
/**
* The complete Hopcrofts algorithm is implemented in this function.
* Choose and remove a set tray from work_queue
* For each input- X is created.
* For each subset in the partition, split_and_replace_sets are called with the
* split set.
* \brief Core of the Hopcroft minimisation algorithm.
*/
static
void dfa_min(DFA_components &mdfa) {
ue2::flat_set<dstate_id_t> A, X;
void dfa_min(HopcroftInfo &info) {
flat_set<dstate_id_t> curr, sym_preds;
vector<size_t> cand_subsets;
while (!mdfa.work_queue.empty()) {
get_work_item(mdfa, A);
while (!info.work_queue.empty()) {
/* Choose and remove a set of states (curr, or A in the description
* above) from the work queue. Note that we copy the set because the
* partition may be split by the loop below. */
curr.clear();
insert(&curr, info.partition[info.work_queue.front()]);
info.work_queue.pop();
for (size_t inp = 0; inp < mdfa.inp_size; inp++) {
create_X(mdfa, A, inp, X);
if (X.empty()) {
for (size_t sym = 0; sym < info.alpha_size; sym++) {
/* Find the set of states sym_preds for which a transition on the
* given symbol leads to a state in curr. */
sym_preds.clear();
for (dstate_id_t s : curr) {
insert(&sym_preds, info.states[s].prev[sym]);
}
if (sym_preds.empty()) {
continue;
}
/* we only need to consider subsets with at least one member in X for
* splitting */
/* we only need to consider subsets with at least one member in
* sym_preds for splitting */
cand_subsets.clear();
mdfa.partition.find_overlapping(X, &cand_subsets);
info.partition.find_overlapping(sym_preds, &cand_subsets);
for (size_t sub : cand_subsets) {
split_and_replace_set(sub, mdfa, X);
split_and_replace_set(sub, info, sym_preds);
}
}
}
}
/**
* Creating new dfa table
* Map ordering contains key being an equivalence classes first state
* and the value being the equivalence class index.
* Eq_state[i] tells us new state id the equivalence class located at
* partition[i].
* \brief Build the new DFA state table.
*/
static
void mapping_new_states(const DFA_components &mdfa,
vector<dstate_id_t> &old_to_new,
raw_dfa &rdfa) {
const size_t num_partitions = mdfa.partition.size();
void mapping_new_states(const HopcroftInfo &info,
vector<dstate_id_t> &old_to_new, raw_dfa &rdfa) {
const size_t num_partitions = info.partition.size();
// Mapping from equiv class's first state to equiv class index.
map<dstate_id_t, size_t> ordering;
@ -279,7 +244,7 @@ void mapping_new_states(const DFA_components &mdfa,
vector<dstate_id_t> eq_state(num_partitions);
for (size_t i = 0; i < num_partitions; i++) {
ordering[*mdfa.partition[i].begin()] = i;
ordering[*info.partition[i].begin()] = i;
}
dstate_id_t new_id = 0;
@ -287,30 +252,28 @@ void mapping_new_states(const DFA_components &mdfa,
eq_state[m.second] = new_id++;
}
for (size_t t = 0; t < mdfa.partition.size(); t++) {
for (dstate_id_t id : mdfa.partition[t]) {
for (size_t t = 0; t < info.partition.size(); t++) {
for (dstate_id_t id : info.partition[t]) {
old_to_new[id] = eq_state[t];
}
}
vector<dstate> new_states;
new_states.reserve(num_partitions);
for (size_t i = 0; i < mdfa.nstates; i++) {
if (contains(ordering, i)) {
new_states.push_back(rdfa.states[i]);
for (const auto &m : ordering) {
new_states.push_back(rdfa.states[m.first]);
}
}
rdfa.states.swap(new_states);
rdfa.states = std::move(new_states);
}
static
void renumber_new_states(const DFA_components &mdfa,
const vector<dstate_id_t> &old_to_new,
raw_dfa &rdfa) {
for (size_t i = 0; i < mdfa.partition.size(); i++) {
for (size_t j = 0; j < mdfa.inp_size; j++) {
dstate_id_t output = rdfa.states[i].next[j];
rdfa.states[i].next[j] = old_to_new[output];
void renumber_new_states(const HopcroftInfo &info,
const vector<dstate_id_t> &old_to_new, raw_dfa &rdfa) {
for (size_t i = 0; i < info.partition.size(); i++) {
for (size_t sym = 0; sym < info.alpha_size; sym++) {
dstate_id_t output = rdfa.states[i].next[sym];
rdfa.states[i].next[sym] = old_to_new[output];
}
dstate_id_t dad = rdfa.states[i].daddy;
rdfa.states[i].daddy = old_to_new[dad];
@ -321,17 +284,16 @@ void renumber_new_states(const DFA_components &mdfa,
}
static
void new_dfa(raw_dfa &rdfa, const DFA_components &mdfa) {
if (mdfa.partition.size() != mdfa.nstates) {
vector<dstate_id_t> old_to_new(mdfa.nstates);
mapping_new_states(mdfa, old_to_new, rdfa);
renumber_new_states(mdfa, old_to_new, rdfa);
void new_dfa(raw_dfa &rdfa, const HopcroftInfo &info) {
if (info.partition.size() == info.states.size()) {
return;
}
vector<dstate_id_t> old_to_new(info.states.size());
mapping_new_states(info, old_to_new, rdfa);
renumber_new_states(info, old_to_new, rdfa);
}
/**
* MAIN FUNCTION
*/
void minimize_hopcroft(raw_dfa &rdfa, const Grey &grey) {
if (!grey.minimizeDFA) {
return;
@ -339,10 +301,10 @@ void minimize_hopcroft(raw_dfa &rdfa, const Grey &grey) {
UNUSED const size_t states_before = rdfa.states.size();
DFA_components mdfa(rdfa);
HopcroftInfo info(rdfa);
dfa_min(mdfa);
new_dfa(rdfa, mdfa);
dfa_min(info);
new_dfa(rdfa, info);
DEBUG_PRINTF("reduced from %zu to %zu states\n", states_before,
rdfa.states.size());

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2015, Intel Corporation
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
@ -26,8 +26,9 @@
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Build code for McClellan DFA.
/**
* \file
* \brief Build code for DFA minimization.
*/
#ifndef DFA_MIN_H