more efficent accel path discovery

This commit is contained in:
Alex Coyte 2016-04-05 14:31:13 +10:00 committed by Matthew Barr
parent ff82ea6d6e
commit 850636dbd6
2 changed files with 177 additions and 156 deletions

View File

@ -190,83 +190,148 @@ void findPaths(const NGHolder &g, NFAVertex v,
}
}
static
AccelScheme merge(AccelScheme a, const AccelScheme &b) {
a.cr |= b.cr;
ENSURE_AT_LEAST(&a.offset, b.offset);
a.double_cr |= b.double_cr;
insert(&a.double_byte, b.double_byte);
ENSURE_AT_LEAST(&a.double_offset, b.double_offset);
return a;
}
struct SAccelScheme {
SAccelScheme(const CharReach &cr_in, u32 offset_in)
: cr(cr_in), offset(offset_in) {
assert(offset <= MAX_ACCEL_DEPTH);
}
SAccelScheme() {}
bool operator<(const SAccelScheme &b) const {
const SAccelScheme &a = *this;
const size_t a_count = cr.count(), b_count = b.cr.count();
if (a_count != b_count) {
return a_count < b_count;
}
/* TODO: give bonus if one is a 'caseless' character */
ORDER_CHECK(offset);
ORDER_CHECK(cr);
return false;
}
CharReach cr = CharReach::dot();
u32 offset = MAX_ACCEL_DEPTH + 1;
};
static
void findBest(vector<vector<CharReach> >::const_iterator pb,
vector<vector<CharReach> >::const_iterator pe,
const AccelScheme &curr, AccelScheme *best) {
const SAccelScheme &curr, SAccelScheme *best) {
assert(curr.offset <= MAX_ACCEL_DEPTH);
DEBUG_PRINTF("paths left %zu\n", pe - pb);
if (pb == pe) {
if (curr < *best) {
DEBUG_PRINTF("new best\n");
*best = curr;
}
*best = curr;
return;
}
DEBUG_PRINTF("p len %zu\n", pb->end() - pb->begin());
vector<AccelScheme> priority_path;
vector<SAccelScheme> priority_path;
priority_path.reserve(pb->size());
u32 i = 0;
for (vector<CharReach>::const_iterator p = pb->begin(); p != pb->end();
++p, i++) {
priority_path.push_back(AccelScheme(*p & ~curr.cr, i));
SAccelScheme as(*p | curr.cr, MAX(i, curr.offset));
if (*best < as) {
DEBUG_PRINTF("worse\n");
continue;
}
priority_path.push_back(move(as));
}
sort(priority_path.begin(), priority_path.end());
for (vector<AccelScheme>::iterator it = priority_path.begin();
it != priority_path.end(); ++it) {
vector<AccelScheme>::iterator jt = it + 1;
for (auto it = priority_path.begin(); it != priority_path.end(); ++it) {
auto jt = next(it);
for (; jt != priority_path.end(); ++jt) {
if (!it->cr.isSubsetOf(jt->cr)) {
break;
}
}
priority_path.erase(it + 1, jt);
priority_path.erase(next(it), jt);
DEBUG_PRINTF("||%zu\n", it->cr.count());
}
DEBUG_PRINTF("---\n");
for (vector<AccelScheme>::const_iterator it = priority_path.begin();
for (vector<SAccelScheme>::const_iterator it = priority_path.begin();
it != priority_path.end(); ++it) {
DEBUG_PRINTF("%u:|| = %zu; p remaining len %zu\n", i, it->cr.count(),
priority_path.end() - it);
AccelScheme in = merge(curr, *it);
SAccelScheme in = move(*it);
if (in > *best) {
if (*best < in) {
DEBUG_PRINTF("worse\n");
continue;
}
AccelScheme temp = *best;
findBest(pb + 1, pe, in, &temp);
if (temp < *best) {
DEBUG_PRINTF("new best\n");
*best = temp;
if (curr.cr == best->cr) {
return; /* could only get better by offset */
}
findBest(pb + 1, pe, in, best);
if (curr.cr == best->cr) {
return; /* could only get better by offset */
}
}
}
struct DAccelScheme {
DAccelScheme(const CharReach &cr_in, u32 offset_in)
: double_cr(cr_in), double_offset(offset_in) {
assert(double_offset <= MAX_ACCEL_DEPTH);
}
DAccelScheme() {}
bool operator<(const DAccelScheme &b) const {
const DAccelScheme &a = *this;
size_t a_dcount = a.double_cr.count();
size_t b_dcount = b.double_cr.count();
assert(!a.double_byte.empty() || a_dcount || a.double_offset);
assert(!b.double_byte.empty() || b_dcount || b.double_offset);
if (a_dcount != b_dcount) {
return a_dcount < b_dcount;
}
if (!a_dcount) {
bool cd_a = buildDvermMask(a.double_byte);
bool cd_b = buildDvermMask(b.double_byte);
if (cd_a != cd_b) {
return cd_a > cd_b;
}
}
ORDER_CHECK(double_byte.size());
ORDER_CHECK(double_offset);
/* TODO: give bonus if one is a 'caseless' character */
ORDER_CHECK(double_byte);
ORDER_CHECK(double_cr);
return false;
}
ue2::flat_set<std::pair<u8, u8> > double_byte;
CharReach double_cr;
u32 double_offset = 0;
};
static
AccelScheme make_double_accel(AccelScheme as, CharReach cr_1,
const CharReach &cr_2_in, u32 offset_in) {
DAccelScheme make_double_accel(DAccelScheme as, CharReach cr_1,
const CharReach &cr_2_in, u32 offset_in) {
cr_1 &= ~as.double_cr;
CharReach cr_2 = cr_2_in & ~as.double_cr;
u32 offset = offset_in;
if (cr_1.none()) {
DEBUG_PRINTF("empty first element\n");
as.double_offset = offset;
ENSURE_AT_LEAST(&as.double_offset, offset);
return as;
}
@ -280,7 +345,7 @@ AccelScheme make_double_accel(AccelScheme as, CharReach cr_1,
if (!two_count) {
DEBUG_PRINTF("empty element\n");
as.double_offset = offset;
ENSURE_AT_LEAST(&as.double_offset, offset);
return as;
}
@ -296,63 +361,69 @@ AccelScheme make_double_accel(AccelScheme as, CharReach cr_1,
i = cr_1.find_next(i)) {
for (auto j = cr_2.find_first(); j != CharReach::npos;
j = cr_2.find_next(j)) {
as.double_byte.insert(make_pair(i, j));
as.double_byte.emplace(i, j);
}
}
}
as.double_offset = offset;
ENSURE_AT_LEAST(&as.double_offset, offset);
DEBUG_PRINTF("construct da %zu pairs, %zu singles, offset %u\n",
as.double_byte.size(), as.double_cr.count(), as.offset);
as.double_byte.size(), as.double_cr.count(), as.double_offset);
return as;
}
static
void findDoubleBest(vector<vector<CharReach> >::const_iterator pb,
vector<vector<CharReach> >::const_iterator pe,
const AccelScheme &curr, AccelScheme *best) {
assert(curr.offset <= MAX_ACCEL_DEPTH);
const DAccelScheme &curr, DAccelScheme *best) {
assert(curr.double_offset <= MAX_ACCEL_DEPTH);
DEBUG_PRINTF("paths left %zu\n", pe - pb);
DEBUG_PRINTF("current base: %zu pairs, %zu singles, offset %u\n",
curr.double_byte.size(), curr.double_cr.count(),
curr.double_offset);
if (pb == pe) {
*best = curr;
if (curr < *best) {
*best = curr;
DEBUG_PRINTF("new best: %zu pairs, %zu singles, offset %u\n",
best->double_byte.size(), best->double_cr.count(),
best->double_offset);
}
return;
}
DEBUG_PRINTF("p len %zu\n", pb->end() - pb->begin());
vector<AccelScheme> priority_path;
vector<DAccelScheme> priority_path;
priority_path.reserve(pb->size());
u32 i = 0;
for (vector<CharReach>::const_iterator p = pb->begin();
p != pb->end() && next(p) != pb->end();
++p, i++) {
priority_path.push_back(make_double_accel(curr, *p, *next(p), i));
}
sort(priority_path.begin(), priority_path.end());
DEBUG_PRINTF("input best: %zu pairs, %zu singles, offset %u\n",
best->double_byte.size(), best->double_cr.count(),
best->offset);
for (vector<AccelScheme>::const_iterator it = priority_path.begin();
it != priority_path.end(); ++it) {
AccelScheme in = merge(curr, *it);
DEBUG_PRINTF("in: %zu pairs, %zu singles, offset %u\n",
in.double_byte.size(), in.double_cr.count(), in.offset);
if (in > *best) {
DAccelScheme as = make_double_accel(curr, *p, *next(p), i);
if (*best < as) {
DEBUG_PRINTF("worse\n");
continue;
}
AccelScheme temp = *best;
findDoubleBest(pb + 1, pe, in, &temp);
if (temp < *best) {
*best = temp;
DEBUG_PRINTF("new best: %zu pairs, %zu singles, offset %u\n",
best->double_byte.size(), best->double_cr.count(),
best->offset);
priority_path.push_back(move(as));
}
sort(priority_path.begin(), priority_path.end());
DEBUG_PRINTF("%zu candidates for this path\n", priority_path.size());
DEBUG_PRINTF("input best: %zu pairs, %zu singles, offset %u\n",
best->double_byte.size(), best->double_cr.count(),
best->double_offset);
for (vector<DAccelScheme>::const_iterator it = priority_path.begin();
it != priority_path.end(); ++it) {
DAccelScheme in = move(*it);
DEBUG_PRINTF("in: %zu pairs, %zu singles, offset %u\n",
in.double_byte.size(), in.double_cr.count(),
in.double_offset);
if (*best < in) {
DEBUG_PRINTF("worse\n");
continue;
}
findDoubleBest(pb + 1, pe, in, best);
}
}
@ -439,20 +510,23 @@ void improvePaths(vector<vector<CharReach> > &paths) {
#define MAX_DOUBLE_ACCEL_PATHS 10
static
AccelScheme findBestDoubleAccelScheme(vector<vector<CharReach> > paths,
const CharReach &terminating) {
DAccelScheme findBestDoubleAccelScheme(vector<vector<CharReach> > paths,
const CharReach &terminating) {
DEBUG_PRINTF("looking for double accel, %zu terminating symbols\n",
terminating.count());
unifyPathsLastSegment(paths);
AccelScheme curr;
curr.double_cr = terminating;
curr.offset = 0;
#ifdef DEBUG
DEBUG_PRINTF("paths:\n");
dumpPaths(paths);
#endif
/* if there are too many paths, shorten the paths to reduce the number of
* distinct paths we have to consider */
while (paths.size() > MAX_DOUBLE_ACCEL_PATHS) {
for (auto &p : paths) {
if (p.empty()) {
return curr;
return DAccelScheme(terminating, 0U);
}
p.pop_back();
}
@ -460,39 +534,44 @@ AccelScheme findBestDoubleAccelScheme(vector<vector<CharReach> > paths,
}
if (paths.empty()) {
return curr;
return DAccelScheme(terminating, 0U);
}
AccelScheme best;
best.double_cr = CharReach::dot();
DAccelScheme curr(terminating, 0U);
DAccelScheme best(CharReach::dot(), 0U);
findDoubleBest(paths.begin(), paths.end(), curr, &best);
curr = best;
DEBUG_PRINTF("da %zu pairs, %zu singles\n", curr.double_byte.size(),
curr.double_cr.count());
return curr;
DEBUG_PRINTF("da %zu pairs, %zu singles\n", best.double_byte.size(),
best.double_cr.count());
return best;
}
#define MAX_EXPLORE_PATHS 40
AccelScheme findBestAccelScheme(vector<vector<CharReach> > paths,
const CharReach &terminating,
bool look_for_double_byte) {
AccelScheme da;
AccelScheme rv;
if (look_for_double_byte) {
da = findBestDoubleAccelScheme(paths, terminating);
DAccelScheme da = findBestDoubleAccelScheme(paths, terminating);
if (da.double_byte.size() <= DOUBLE_SHUFTI_LIMIT) {
rv.double_byte = move(da.double_byte);
rv.double_cr = move(da.double_cr);
rv.double_offset = da.double_offset;
}
}
improvePaths(paths);
DEBUG_PRINTF("we have %zu paths\n", paths.size());
if (paths.size() > 40) {
return da; /* too many paths to explore */
if (paths.size() > MAX_EXPLORE_PATHS) {
return rv; /* too many paths to explore */
}
/* if we were smart we would do something netflowy on the paths to find the
* best cut. But we aren't, so we will just brute force it.
*/
AccelScheme curr(terminating, 0U);
AccelScheme best;
SAccelScheme curr(terminating, 0U);
SAccelScheme best;
findBest(paths.begin(), paths.end(), curr, &best);
/* find best is a bit lazy in terms of minimising the offset, see if we can
@ -512,15 +591,13 @@ AccelScheme findBestAccelScheme(vector<vector<CharReach> > paths,
assert(offset <= best.offset);
best.offset = offset;
/* merge best single and best double */
if (!da.double_byte.empty() && da.double_byte.size() <= DOUBLE_SHUFTI_LIMIT
&& da.double_cr.count() < best.cr.count()) {
best.double_byte = da.double_byte;
best.double_cr = da.double_cr;
best.double_offset = da.double_offset;
rv.offset = best.offset;
rv.cr = best.cr;
if (rv.cr.count() < rv.double_cr.count()) {
rv.double_byte.clear();
}
return best;
return rv;
}
AccelScheme nfaFindAccel(const NGHolder &g, const vector<NFAVertex> &verts,
@ -832,7 +909,9 @@ depth_done:
for (unsigned int i = 0; i < depth; i++) {
if (depthReach[i].none()) {
DEBUG_PRINTF("red tape acceleration engine depth %u\n", i);
*as = AccelScheme(CharReach(), i);
*as = AccelScheme();
as->offset = i;
as->cr = CharReach();
return true;
}
}
@ -847,7 +926,8 @@ depth_done:
|| (cra.count() == 2 && crb.count() == 2
&& cra.isBit5Insensitive() && crb.isBit5Insensitive())) {
DEBUG_PRINTF("two-byte vermicelli, depth %u\n", i);
*as = AccelScheme(CharReach::dot(), i);
*as = AccelScheme();
as->offset = i;
return true;
}
}
@ -860,7 +940,8 @@ depth_done:
if (depthReach[i].count() * depthReach[i+1].count()
<= DOUBLE_SHUFTI_LIMIT) {
DEBUG_PRINTF("two-byte shufti, depth %u\n", i);
*as = AccelScheme(CharReach::dot(), i);
*as = AccelScheme();
as->offset = i;
return true;
}
}

View File

@ -66,71 +66,10 @@ void findAccelFriends(const NGHolder &g, NFAVertex v,
#define DOUBLE_SHUFTI_LIMIT 20
struct AccelScheme {
AccelScheme(const CharReach &cr_in, u32 offset_in)
: cr(cr_in), offset(offset_in) {
assert(offset <= MAX_ACCEL_DEPTH);
}
AccelScheme() : cr(CharReach::dot()), offset(MAX_ACCEL_DEPTH + 1) {}
bool operator<(const AccelScheme &b) const {
const AccelScheme &a = *this;
// Don't use ORDER_CHECK as it will (stupidly) eval count() too many
// times.
size_t a_dcount = double_cr.count();
size_t b_dcount = b.double_cr.count();
bool feasible_double_a = !a.double_byte.empty()
&& a.double_byte.size() <= DOUBLE_SHUFTI_LIMIT;
bool feasible_double_b = !b.double_byte.empty()
&& b.double_byte.size() <= DOUBLE_SHUFTI_LIMIT;
if (feasible_double_a != feasible_double_b) {
return feasible_double_a > feasible_double_b;
}
if (feasible_double_a) {
if (a_dcount != b_dcount) {
return a_dcount < b_dcount;
}
if ((a.double_byte.size() == 1) != (b.double_byte.size() == 1)) {
return a.double_byte.size() < b.double_byte.size();
}
if (!a_dcount) {
bool cd_a = buildDvermMask(a.double_byte);
bool cd_b = buildDvermMask(b.double_byte);
if (cd_a != cd_b) {
return cd_a > cd_b;
}
}
ORDER_CHECK(double_byte.size());
ORDER_CHECK(double_offset);
}
const size_t a_count = cr.count(), b_count = b.cr.count();
if (a_count != b_count) {
return a_count < b_count;
}
/* TODO: give bonus if one is a 'caseless' character */
ORDER_CHECK(offset);
ORDER_CHECK(cr);
ORDER_CHECK(double_byte);
ORDER_CHECK(double_cr);
ORDER_CHECK(double_offset);
return false;
}
bool operator>(const AccelScheme &b) const {
return b < *this;
}
ue2::flat_set<std::pair<u8, u8> > double_byte;
CharReach cr;
CharReach cr = CharReach::dot();
CharReach double_cr;
u32 offset;
u32 offset = MAX_ACCEL_DEPTH + 1;
u32 double_offset = 0;
};
@ -153,7 +92,8 @@ bool nfaCheckAccel(const NGHolder &g, NFAVertex v,
const std::map<NFAVertex, BoundedRepeatSummary> &br_cyclic,
AccelScheme *as, bool allow_wide);
/** \brief Check if vertex \a v is a multi accelerable state (for a limex NFA). */
/** \brief Check if vertex \a v is a multi accelerable state (for a limex NFA).
*/
MultibyteAccelInfo nfaCheckMultiAccel(const NGHolder &g,
const std::vector<NFAVertex> &verts,
const CompileContext &cc);