Merge branch 'develop' into wip-isildur-g-cppcheck-47-48-58

This commit is contained in:
g. economou 2024-05-01 10:59:59 +03:00 committed by GitHub
commit 727cff3621
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
89 changed files with 1608 additions and 588 deletions

View File

@ -1221,11 +1221,17 @@ if (NOT BUILD_STATIC_LIBS)
endif ()
add_subdirectory(util)
add_subdirectory(unit)
if (EXISTS ${CMAKE_SOURCE_DIR}/tools/CMakeLists.txt)
option(BUILD_UNIT "Build Hyperscan unit tests (default TRUE)" TRUE)
if(BUILD_UNIT)
add_subdirectory(unit)
endif()
option(BUILD_TOOLS "Build Hyperscan tools (default TRUE)" TRUE)
if(EXISTS ${CMAKE_SOURCE_DIR}/tools/CMakeLists.txt AND BUILD_TOOLS)
add_subdirectory(tools)
endif()
if (EXISTS ${CMAKE_SOURCE_DIR}/chimera/CMakeLists.txt AND BUILD_CHIMERA)
add_subdirectory(chimera)
endif()
@ -1240,4 +1246,7 @@ if(BUILD_BENCHMARKS)
add_subdirectory(benchmarks)
endif()
add_subdirectory(doc/dev-reference)
option(BUILD_DOC "Build the Hyperscan documentation (default TRUE)" TRUE)
if(BUILD_DOC)
add_subdirectory(doc/dev-reference)
endif()

View File

@ -146,6 +146,7 @@ export CXX="/usr/pkg/gcc12/bin/g++"
```
In FreeBSD similarly, you might want to install a different compiler.
If you want to use gcc, it is recommended to use gcc12.
You will also, as in NetBSD, need to install cmake, sqlite, boost and ragel packages.
Using the example of gcc12 from pkg:
installing the desired compiler:
@ -164,7 +165,6 @@ the environment variables to point to this compiler:
export CC="/usr/local/bin/gcc"
export CXX="/usr/local/bin/g++"
```
A further note in FreeBSD, on the PowerPC and ARM platforms,
the gcc12 package installs to a slightly different name, on FreeBSD/ppc,
gcc12 will be found using:
@ -175,12 +175,6 @@ export CXX="/usr/local/bin/g++12"
Then continue with the build as below.
A note about running in FreeBSD: if you built a dynamically linked binary
with an alternative compiler, the libraries specific to the compiler that
built the binary will probably not be found and the base distro libraries
in /lib will be found instead. Adjust LD_LIBRARY_PATH appropriately. For
example, with gcc12 installed from pkg, one would want to use
```export LD_LIBRARY_PATH=/usr/local/lib/gcc12/```
## Configure & build

View File

@ -26,32 +26,30 @@
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <iostream>
#include <chrono>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <cstdlib>
#include <memory>
#include <functional>
#include <iostream>
#include <memory>
#include "benchmarks.hpp"
#define MAX_LOOPS 1000000000
#define MAX_MATCHES 5
#define N 8
#define MAX_LOOPS 1000000000
#define MAX_MATCHES 5
#define N 8
struct hlmMatchEntry {
size_t to;
u32 id;
hlmMatchEntry(size_t end, u32 identifier) :
to(end), id(identifier) {}
hlmMatchEntry(size_t end, u32 identifier) : to(end), id(identifier) {}
};
std::vector<hlmMatchEntry> ctxt;
static
hwlmcb_rv_t hlmSimpleCallback(size_t to, u32 id,
UNUSED struct hs_scratch *scratch) {
static hwlmcb_rv_t hlmSimpleCallback(size_t to, u32 id,
UNUSED struct hs_scratch *scratch) {
DEBUG_PRINTF("match @%zu = %u\n", to, id);
ctxt.push_back(hlmMatchEntry(to, id));
@ -59,40 +57,42 @@ hwlmcb_rv_t hlmSimpleCallback(size_t to, u32 id,
return HWLM_CONTINUE_MATCHING;
}
template<typename InitFunc, typename BenchFunc>
static void run_benchmarks(int size, int loops, int max_matches, bool is_reverse, MicroBenchmark &bench, InitFunc &&init, BenchFunc &&func) {
template <typename InitFunc, typename BenchFunc>
static void run_benchmarks(int size, int loops, int max_matches,
bool is_reverse, MicroBenchmark &bench,
InitFunc &&init, BenchFunc &&func) {
init(bench);
double total_sec = 0.0;
u64a total_size = 0;
double bw = 0.0;
double avg_bw = 0.0;
double max_bw = 0.0;
double avg_time = 0.0;
if (max_matches) {
double avg_bw = 0.0;
int pos = 0;
for(int j = 0; j < max_matches - 1; j++) {
for (int j = 0; j < max_matches - 1; j++) {
bench.buf[pos] = 'b';
pos = (j+1) *size / max_matches ;
pos = (j + 1) * size / max_matches;
bench.buf[pos] = 'a';
u64a actual_size = 0;
auto start = std::chrono::steady_clock::now();
for(int i = 0; i < loops; i++) {
for (int i = 0; i < loops; i++) {
const u8 *res = func(bench);
if (is_reverse)
actual_size += bench.buf.data() + size - res;
else
actual_size += res - bench.buf.data();
if (is_reverse)
actual_size += bench.buf.data() + size - res;
else
actual_size += res - bench.buf.data();
}
auto end = std::chrono::steady_clock::now();
double dt = std::chrono::duration_cast<std::chrono::microseconds>(end - start).count();
double dt = std::chrono::duration_cast<std::chrono::microseconds>(
end - start)
.count();
total_sec += dt;
/*convert microseconds to seconds*/
/*calculate bandwidth*/
bw = (actual_size / dt) * 1000000.0 / 1048576.0;
/*std::cout << "act_size = " << act_size << std::endl;
std::cout << "dt = " << dt << std::endl;
std::cout << "bw = " << bw << std::endl;*/
avg_bw += bw;
double bw = (actual_size / dt) * 1000000.0 / 1048576.0;
/*std::cout << "act_size = " << act_size << std::endl;
std::cout << "dt = " << dt << std::endl;
std::cout << "bw = " << bw << std::endl;*/
avg_bw += bw;
/*convert to MB/s*/
max_bw = std::max(bw, max_bw);
/*calculate average time*/
@ -100,20 +100,22 @@ static void run_benchmarks(int size, int loops, int max_matches, bool is_reverse
}
avg_time /= max_matches;
avg_bw /= max_matches;
total_sec /= 1000000.0;
total_sec /= 1000000.0;
/*convert average time to us*/
printf(KMAG "%s: %u matches, %u * %u iterations," KBLU " total elapsed time =" RST " %.3f s, "
KBLU "average time per call =" RST " %.3f μs," KBLU " max bandwidth = " RST " %.3f MB/s," KBLU " average bandwidth =" RST " %.3f MB/s \n",
printf("%-18s, %-12d, %-10d, %-6d, %-10.3f, %-9.3f, %-8.3f, %-7.3f\n",
bench.label, max_matches, size ,loops, total_sec, avg_time, max_bw, avg_bw);
} else {
u64a total_size = 0;
auto start = std::chrono::steady_clock::now();
for (int i = 0; i < loops; i++) {
const u8 *res = func(bench);
func(bench);
}
auto end = std::chrono::steady_clock::now();
total_sec += std::chrono::duration_cast<std::chrono::microseconds>(end - start).count();
total_sec +=
std::chrono::duration_cast<std::chrono::microseconds>(end - start)
.count();
/*calculate transferred size*/
total_size = size * loops;
total_size = (u64a)size * (u64a)loops;
/*calculate average time*/
avg_time = total_sec / loops;
/*convert microseconds to seconds*/
@ -122,117 +124,126 @@ static void run_benchmarks(int size, int loops, int max_matches, bool is_reverse
max_bw = total_size / total_sec;
/*convert to MB/s*/
max_bw /= 1048576.0;
printf(KMAG "%s: no matches, %u * %u iterations," KBLU " total elapsed time =" RST " %.3f s, "
KBLU "average time per call =" RST " %.3f μs ," KBLU " bandwidth = " RST " %.3f MB/s \n",
bench.label, size ,loops, total_sec, avg_time, max_bw );
printf("%-18s, %-12s, %-10d, %-6d, %-10.3f, %-9.3f, %-8.3f, %-7s\n",
bench.label, "0", size, loops, total_sec, avg_time, max_bw, "0");
}
}
int main(){
const int matches[] = {0, MAX_MATCHES};
std::vector<size_t> sizes;
for (size_t i = 0; i < N; i++) sizes.push_back(16000 << i*2);
for (size_t i = 0; i < N; i++)
sizes.push_back(16000 << i * 2);
const char charset[] = "aAaAaAaAAAaaaaAAAAaaaaAAAAAAaaaAAaaa";
printf("%-18s, %-12s, %-10s, %-6s, %-10s, %-9s, %-8s, %-7s\n", "Matcher",
"max_matches", "size", "loops", "total_sec", "avg_time", "max_bw",
"avg_bw");
for (int m = 0; m < 2; m++) {
for (size_t i = 0; i < std::size(sizes); i++) {
MicroBenchmark bench("Shufti", sizes[i]);
run_benchmarks(sizes[i], MAX_LOOPS / sizes[i], matches[m], false, bench,
run_benchmarks(
sizes[i], MAX_LOOPS / sizes[i], matches[m], false, bench,
[&](MicroBenchmark &b) {
b.chars.set('a');
ue2::shuftiBuildMasks(b.chars, (u8 *)&b.lo, (u8 *)&b.hi);
memset(b.buf.data(), 'b', b.size);
},
[&](MicroBenchmark &b) {
return shuftiExec(b.lo, b.hi, b.buf.data(), b.buf.data() + b.size);
}
);
return shuftiExec(b.lo, b.hi, b.buf.data(),
b.buf.data() + b.size);
});
}
for (size_t i = 0; i < std::size(sizes); i++) {
MicroBenchmark bench("Reverse Shufti", sizes[i]);
run_benchmarks(sizes[i], MAX_LOOPS / sizes[i], matches[m], true, bench,
run_benchmarks(
sizes[i], MAX_LOOPS / sizes[i], matches[m], true, bench,
[&](MicroBenchmark &b) {
b.chars.set('a');
ue2::shuftiBuildMasks(b.chars, (u8 *)&b.lo, (u8 *)&b.hi);
memset(b.buf.data(), 'b', b.size);
},
[&](MicroBenchmark &b) {
return rshuftiExec(b.lo, b.hi, b.buf.data(), b.buf.data() + b.size);
}
);
return rshuftiExec(b.lo, b.hi, b.buf.data(),
b.buf.data() + b.size);
});
}
for (size_t i = 0; i < std::size(sizes); i++) {
MicroBenchmark bench("Truffle", sizes[i]);
run_benchmarks(sizes[i], MAX_LOOPS / sizes[i], matches[m], false, bench,
run_benchmarks(
sizes[i], MAX_LOOPS / sizes[i], matches[m], false, bench,
[&](MicroBenchmark &b) {
b.chars.set('a');
ue2::truffleBuildMasks(b.chars, (u8 *)&b.lo, (u8 *)&b.hi);
memset(b.buf.data(), 'b', b.size);
},
[&](MicroBenchmark &b) {
return truffleExec(b.lo, b.hi, b.buf.data(), b.buf.data() + b.size);
}
);
return truffleExec(b.lo, b.hi, b.buf.data(),
b.buf.data() + b.size);
});
}
for (size_t i = 0; i < std::size(sizes); i++) {
MicroBenchmark bench("Reverse Truffle", sizes[i]);
run_benchmarks(sizes[i], MAX_LOOPS / sizes[i], matches[m], true, bench,
run_benchmarks(
sizes[i], MAX_LOOPS / sizes[i], matches[m], true, bench,
[&](MicroBenchmark &b) {
b.chars.set('a');
ue2::truffleBuildMasks(b.chars, (u8 *)&b.lo, (u8 *)&b.hi);
memset(b.buf.data(), 'b', b.size);
},
[&](MicroBenchmark &b) {
return rtruffleExec(b.lo, b.hi, b.buf.data(), b.buf.data() + b.size);
}
);
return rtruffleExec(b.lo, b.hi, b.buf.data(),
b.buf.data() + b.size);
});
}
for (size_t i = 0; i < std::size(sizes); i++) {
MicroBenchmark bench("Vermicelli", sizes[i]);
run_benchmarks(sizes[i], MAX_LOOPS / sizes[i], matches[m], false, bench,
run_benchmarks(
sizes[i], MAX_LOOPS / sizes[i], matches[m], false, bench,
[&](MicroBenchmark &b) {
b.chars.set('a');
ue2::truffleBuildMasks(b.chars, (u8 *)&b.lo, (u8 *)&b.hi);
memset(b.buf.data(), 'b', b.size);
},
[&](MicroBenchmark &b) {
return vermicelliExec('a', 'b', b.buf.data(), b.buf.data() + b.size);
}
);
return vermicelliExec('a', 'b', b.buf.data(),
b.buf.data() + b.size);
});
}
for (size_t i = 0; i < std::size(sizes); i++) {
MicroBenchmark bench("Reverse Vermicelli", sizes[i]);
run_benchmarks(sizes[i], MAX_LOOPS / sizes[i], matches[m], true, bench,
run_benchmarks(
sizes[i], MAX_LOOPS / sizes[i], matches[m], true, bench,
[&](MicroBenchmark &b) {
b.chars.set('a');
ue2::truffleBuildMasks(b.chars, (u8 *)&b.lo, (u8 *)&b.hi);
memset(b.buf.data(), 'b', b.size);
},
[&](MicroBenchmark &b) {
return rvermicelliExec('a', 'b', b.buf.data(), b.buf.data() + b.size);
}
);
return rvermicelliExec('a', 'b', b.buf.data(),
b.buf.data() + b.size);
});
}
for (size_t i = 0; i < std::size(sizes); i++) {
//we imitate the noodle unit tests
// we imitate the noodle unit tests
std::string str;
const size_t char_len = 5;
str.resize(char_len + 1);
for (size_t j=0; j < char_len; j++) {
srand (time(NULL));
int key = rand() % + 36 ;
for (size_t j = 0; j < char_len; j++) {
srand(time(NULL));
int key = rand() % +36;
str[char_len] = charset[key];
str[char_len + 1] = '\0';
}
MicroBenchmark bench("Noodle", sizes[i]);
run_benchmarks(sizes[i], MAX_LOOPS / sizes[i], matches[m], false, bench,
run_benchmarks(
sizes[i], MAX_LOOPS / sizes[i], matches[m], false, bench,
[&](MicroBenchmark &b) {
ctxt.clear();
memset(b.buf.data(), 'a', b.size);
@ -242,10 +253,10 @@ int main(){
assert(b.nt != nullptr);
},
[&](MicroBenchmark &b) {
noodExec(b.nt.get(), b.buf.data(), b.size, 0, hlmSimpleCallback, &b.scratch);
noodExec(b.nt.get(), b.buf.data(), b.size, 0,
hlmSimpleCallback, &b.scratch);
return b.buf.data() + b.size;
}
);
});
}
}

View File

@ -26,44 +26,32 @@
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "hwlm/hwlm_literal.h"
#include "hwlm/noodle_build.h"
#include "hwlm/noodle_engine.h"
#include "hwlm/noodle_internal.h"
#include "nfa/shufti.h"
#include "nfa/shufticompile.h"
#include "nfa/truffle.h"
#include "nfa/trufflecompile.h"
#include "nfa/vermicelli.hpp"
#include "hwlm/noodle_build.h"
#include "hwlm/noodle_engine.h"
#include "hwlm/noodle_internal.h"
#include "hwlm/hwlm_literal.h"
#include "util/bytecode_ptr.h"
#include "scratch.h"
#include "util/bytecode_ptr.h"
/*define colour control characters*/
#define RST "\x1B[0m"
#define KRED "\x1B[31m"
#define KGRN "\x1B[32m"
#define KYEL "\x1B[33m"
#define KBLU "\x1B[34m"
#define KMAG "\x1B[35m"
#define KCYN "\x1B[36m"
#define KWHT "\x1B[37m"
class MicroBenchmark
{
class MicroBenchmark {
public:
char const *label;
size_t size;
char const *label;
size_t size;
// Shufti/Truffle
m128 lo, hi;
ue2::CharReach chars;
std::vector<u8> buf;
// Shufti/Truffle
m128 lo, hi;
ue2::CharReach chars;
std::vector<u8> buf;
// Noodle
struct hs_scratch scratch;
ue2::bytecode_ptr<noodTable> nt;
// Noodle
struct hs_scratch scratch;
ue2::bytecode_ptr<noodTable> nt;
MicroBenchmark(char const *label_, size_t size_)
:label(label_), size(size_), buf(size_) {
};
MicroBenchmark(char const *label_, size_t size_)
: label(label_), size(size_), buf(size_){};
};

View File

@ -6,10 +6,10 @@ if(CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
set(FREEBSD true)
set(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
#FIXME: find a nicer and more general way of doing this
if(CMAKE_C_COMPILER MATCHES "/usr/local/bin/gcc12")
set(CMAKE_BUILD_RPATH "/usr/local/lib/gcc12")
elseif(CMAKE_C_COMPILER MATCHES "/usr/local/bin/gcc13")
if(CMAKE_C_COMPILER MATCHES "/usr/local/bin/gcc13")
set(CMAKE_BUILD_RPATH "/usr/local/lib/gcc13")
elseif(ARCH_AARCH64 AND (CMAKE_C_COMPILER MATCHES "/usr/local/bin/gcc12"))
set(CMAKE_BUILD_RPATH "/usr/local/lib/gcc12")
endif()
endif(CMAKE_SYSTEM_NAME MATCHES "FreeBSD")

View File

@ -19,6 +19,7 @@ else()
set(SPHINX_BUILD_DIR "${CMAKE_CURRENT_BINARY_DIR}/_build")
set(SPHINX_CACHE_DIR "${CMAKE_CURRENT_BINARY_DIR}/_doctrees")
set(SPHINX_HTML_DIR "${CMAKE_CURRENT_BINARY_DIR}/html")
set(SPHINX_MAN_DIR "${CMAKE_CURRENT_BINARY_DIR}/man")
configure_file("${CMAKE_CURRENT_SOURCE_DIR}/conf.py.in"
"${CMAKE_CURRENT_BINARY_DIR}/conf.py" @ONLY)
@ -32,4 +33,14 @@ add_custom_target(dev-reference
"${SPHINX_HTML_DIR}"
DEPENDS dev-reference-doxygen
COMMENT "Building HTML dev reference with Sphinx")
add_custom_target(dev-reference-man
${SPHINX_BUILD}
-b man
-c "${CMAKE_CURRENT_BINARY_DIR}"
-d "${SPHINX_CACHE_DIR}"
"${CMAKE_CURRENT_SOURCE_DIR}"
"${SPHINX_MAN_DIR}"
DEPENDS dev-reference-doxygen
COMMENT "Building man page reference with Sphinx")
endif()

View File

@ -11,10 +11,10 @@ Introduction
************
Chimera is a software regular expression matching engine that is a hybrid of
Hyperscan and PCRE. The design goals of Chimera are to fully support PCRE
syntax as well as to take advantage of the high performance nature of Hyperscan.
Vectorscan and PCRE. The design goals of Chimera are to fully support PCRE
syntax as well as to take advantage of the high performance nature of Vectorscan.
Chimera inherits the design guideline of Hyperscan with C APIs for compilation
Chimera inherits the design guideline of Vectorscan with C APIs for compilation
and scanning.
The Chimera API itself is composed of two major components:
@ -65,13 +65,13 @@ For a given database, Chimera provides several guarantees:
.. note:: Chimera is designed to have the same matching behavior as PCRE,
including greedy/ungreedy, capturing, etc. Chimera reports both
**start offset** and **end offset** for each match like PCRE. Different
from the fashion of reporting all matches in Hyperscan, Chimera only reports
from the fashion of reporting all matches in Vectorscan, Chimera only reports
non-overlapping matches. For example, the pattern :regexp:`/foofoo/` will
match ``foofoofoofoo`` at offsets (0, 6) and (6, 12).
.. note:: Since Chimera is a hybrid of Hyperscan and PCRE in order to support
.. note:: Since Chimera is a hybrid of Vectorscan and PCRE in order to support
full PCRE syntax, there will be extra performance overhead compared to
Hyperscan-only solution. Please always use Hyperscan for better performance
Vectorscan-only solution. Please always use Vectorscan for better performance
unless you must need full PCRE syntax support.
See :ref:`chruntime` for more details
@ -83,12 +83,12 @@ Requirements
The PCRE library (http://pcre.org/) version 8.41 is required for Chimera.
.. note:: Since Chimera needs to reference PCRE internal function, please place PCRE source
directory under Hyperscan root directory in order to build Chimera.
directory under Vectorscan root directory in order to build Chimera.
Beside this, both hardware and software requirements of Chimera are the same to Hyperscan.
Beside this, both hardware and software requirements of Chimera are the same to Vectorscan.
See :ref:`hardware` and :ref:`software` for more details.
.. note:: Building Hyperscan will automatically generate Chimera library.
.. note:: Building Vectorscan will automatically generate Chimera library.
Currently only static library is supported for Chimera, so please
use static build type when configure CMake build options.
@ -119,7 +119,7 @@ databases:
Compilation allows the Chimera library to analyze the given pattern(s) and
pre-determine how to scan for these patterns in an optimized fashion using
Hyperscan and PCRE.
Vectorscan and PCRE.
===============
Pattern Support
@ -134,7 +134,7 @@ Semantics
=========
Chimera supports the exact same semantics of PCRE library. Moreover, it supports
multiple simultaneous pattern matching like Hyperscan and the multiple matches
multiple simultaneous pattern matching like Vectorscan and the multiple matches
will be reported in order by end offset.
.. _chruntime:

View File

@ -9,7 +9,7 @@ Compiling Patterns
Building a Database
*******************
The Hyperscan compiler API accepts regular expressions and converts them into a
The Vectorscan compiler API accepts regular expressions and converts them into a
compiled pattern database that can then be used to scan data.
The API provides three functions that compile regular expressions into
@ -24,7 +24,7 @@ databases:
#. :c:func:`hs_compile_ext_multi`: compiles an array of expressions as above,
but allows :ref:`extparam` to be specified for each expression.
Compilation allows the Hyperscan library to analyze the given pattern(s) and
Compilation allows the Vectorscan library to analyze the given pattern(s) and
pre-determine how to scan for these patterns in an optimized fashion that would
be far too expensive to compute at run-time.
@ -48,10 +48,10 @@ To compile patterns to be used in streaming mode, the ``mode`` parameter of
block mode requires the use of :c:member:`HS_MODE_BLOCK` and vectored mode
requires the use of :c:member:`HS_MODE_VECTORED`. A pattern database compiled
for one mode (streaming, block or vectored) can only be used in that mode. The
version of Hyperscan used to produce a compiled pattern database must match the
version of Hyperscan used to scan with it.
version of Vectorscan used to produce a compiled pattern database must match the
version of Vectorscan used to scan with it.
Hyperscan provides support for targeting a database at a particular CPU
Vectorscan provides support for targeting a database at a particular CPU
platform; see :ref:`instr_specialization` for details.
=====================
@ -75,14 +75,14 @@ characters exist in regular grammar like ``[``, ``]``, ``(``, ``)``, ``{``,
While in pure literal case, all these meta characters lost extra meanings
expect for that they are just common ASCII codes.
Hyperscan is initially designed to process common regular expressions. It is
Vectorscan is initially designed to process common regular expressions. It is
hence embedded with a complex parser to do comprehensive regular grammar
interpretation. Particularly, the identification of above meta characters is the
basic step for the interpretation of far more complex regular grammars.
However in real cases, patterns may not always be regular expressions. They
could just be pure literals. Problem will come if the pure literals contain
regular meta characters. Supposing fed directly into traditional Hyperscan
regular meta characters. Supposing fed directly into traditional Vectorscan
compile API, all these meta characters will be interpreted in predefined ways,
which is unnecessary and the result is totally out of expectation. To avoid
such misunderstanding by traditional API, users have to preprocess these
@ -90,7 +90,7 @@ literal patterns by converting the meta characters into some other formats:
either by adding a backslash ``\`` before certain meta characters, or by
converting all the characters into a hexadecimal representation.
In ``v5.2.0``, Hyperscan introduces 2 new compile APIs for pure literal patterns:
In ``v5.2.0``, Vectorscan introduces 2 new compile APIs for pure literal patterns:
#. :c:func:`hs_compile_lit`: compiles a single pure literal into a pattern
database.
@ -106,7 +106,7 @@ content directly into these APIs without worrying about writing regular meta
characters in their patterns. No preprocessing work is needed any more.
For new APIs, the ``length`` of each literal pattern is a newly added parameter.
Hyperscan needs to locate the end position of the input expression via clearly
Vectorscan needs to locate the end position of the input expression via clearly
knowing each literal's length, not by simply identifying character ``\0`` of a
string.
@ -127,19 +127,19 @@ Supported flags: :c:member:`HS_FLAG_CASELESS`, :c:member:`HS_FLAG_SINGLEMATCH`,
Pattern Support
***************
Hyperscan supports the pattern syntax used by the PCRE library ("libpcre"),
Vectorscan supports the pattern syntax used by the PCRE library ("libpcre"),
described at <http://www.pcre.org/>. However, not all constructs available in
libpcre are supported. The use of unsupported constructs will result in
compilation errors.
The version of PCRE used to validate Hyperscan's interpretation of this syntax
The version of PCRE used to validate Vectorscan's interpretation of this syntax
is 8.41 or above.
====================
Supported Constructs
====================
The following regex constructs are supported by Hyperscan:
The following regex constructs are supported by Vectorscan:
* Literal characters and strings, with all libpcre quoting and character
escapes.
@ -177,7 +177,7 @@ The following regex constructs are supported by Hyperscan:
:c:member:`HS_FLAG_SINGLEMATCH` flag is on for that pattern.
* Lazy modifiers (:regexp:`?` appended to another quantifier, e.g.
:regexp:`\\w+?`) are supported but ignored (as Hyperscan reports all
:regexp:`\\w+?`) are supported but ignored (as Vectorscan reports all
matches).
* Parenthesization, including the named and unnamed capturing and
@ -219,15 +219,15 @@ The following regex constructs are supported by Hyperscan:
.. note:: At this time, not all patterns can be successfully compiled with the
:c:member:`HS_FLAG_SOM_LEFTMOST` flag, which enables per-pattern support for
:ref:`som`. The patterns that support this flag are a subset of patterns that
can be successfully compiled with Hyperscan; notably, many bounded repeat
forms that can be compiled with Hyperscan without the Start of Match flag
can be successfully compiled with Vectorscan; notably, many bounded repeat
forms that can be compiled with Vectorscan without the Start of Match flag
enabled cannot be compiled with the flag enabled.
======================
Unsupported Constructs
======================
The following regex constructs are not supported by Hyperscan:
The following regex constructs are not supported by Vectorscan:
* Backreferences and capturing sub-expressions.
* Arbitrary zero-width assertions.
@ -246,32 +246,32 @@ The following regex constructs are not supported by Hyperscan:
Semantics
*********
While Hyperscan follows libpcre syntax, it provides different semantics. The
While Vectorscan follows libpcre syntax, it provides different semantics. The
major departures from libpcre semantics are motivated by the requirements of
streaming and multiple simultaneous pattern matching.
The major departures from libpcre semantics are:
#. **Multiple pattern matching**: Hyperscan allows matches to be reported for
#. **Multiple pattern matching**: Vectorscan allows matches to be reported for
several patterns simultaneously. This is not equivalent to separating the
patterns by :regexp:`|` in libpcre, which evaluates alternations
left-to-right.
#. **Lack of ordering**: the multiple matches that Hyperscan produces are not
#. **Lack of ordering**: the multiple matches that Vectorscan produces are not
guaranteed to be ordered, although they will always fall within the bounds of
the current scan.
#. **End offsets only**: Hyperscan's default behaviour is only to report the end
#. **End offsets only**: Vectorscan's default behaviour is only to report the end
offset of a match. Reporting of the start offset can be enabled with
per-expression flags at pattern compile time. See :ref:`som` for details.
#. **"All matches" reported**: scanning :regexp:`/foo.*bar/` against
``fooxyzbarbar`` will return two matches from Hyperscan -- at the points
``fooxyzbarbar`` will return two matches from Vectorscan -- at the points
corresponding to the ends of ``fooxyzbar`` and ``fooxyzbarbar``. In contrast,
libpcre semantics by default would report only one match at ``fooxyzbarbar``
(greedy semantics) or, if non-greedy semantics were switched on, one match at
``fooxyzbar``. This means that switching between greedy and non-greedy
semantics is a no-op in Hyperscan.
semantics is a no-op in Vectorscan.
To support libpcre quantifier semantics while accurately reporting streaming
matches at the time they occur is impossible. For example, consider the pattern
@ -299,7 +299,7 @@ as in block 3 -- which would constitute a better match for the pattern.
Start of Match
==============
In standard operation, Hyperscan will only provide the end offset of a match
In standard operation, Vectorscan will only provide the end offset of a match
when the match callback is called. If the :c:member:`HS_FLAG_SOM_LEFTMOST` flag
is specified for a particular pattern, then the same set of matches is
returned, but each match will also provide the leftmost possible start offset
@ -308,7 +308,7 @@ corresponding to its end offset.
Using the SOM flag entails a number of trade-offs and limitations:
* Reduced pattern support: For many patterns, tracking SOM is complex and can
result in Hyperscan failing to compile a pattern with a "Pattern too
result in Vectorscan failing to compile a pattern with a "Pattern too
large" error, even if the pattern is supported in normal operation.
* Increased stream state: At scan time, state space is required to track
potential SOM offsets, and this must be stored in persistent stream state in
@ -316,20 +316,20 @@ Using the SOM flag entails a number of trade-offs and limitations:
required to match a pattern.
* Performance overhead: Similarly, there is generally a performance cost
associated with tracking SOM.
* Incompatible features: Some other Hyperscan pattern flags (such as
* Incompatible features: Some other Vectorscan pattern flags (such as
:c:member:`HS_FLAG_SINGLEMATCH` and :c:member:`HS_FLAG_PREFILTER`) can not be
used in combination with SOM. Specifying them together with
:c:member:`HS_FLAG_SOM_LEFTMOST` will result in a compilation error.
In streaming mode, the amount of precision delivered by SOM can be controlled
with the SOM horizon flags. These instruct Hyperscan to deliver accurate SOM
with the SOM horizon flags. These instruct Vectorscan to deliver accurate SOM
information within a certain distance of the end offset, and return a special
start offset of :c:member:`HS_OFFSET_PAST_HORIZON` otherwise. Specifying a
small or medium SOM horizon will usually reduce the stream state required for a
given database.
.. note:: In streaming mode, the start offset returned for a match may refer to
a point in the stream *before* the current block being scanned. Hyperscan
a point in the stream *before* the current block being scanned. Vectorscan
provides no facility for accessing earlier blocks; if the calling application
needs to inspect historical data, then it must store it itself.
@ -341,7 +341,7 @@ Extended Parameters
In some circumstances, more control over the matching behaviour of a pattern is
required than can be specified easily using regular expression syntax. For
these scenarios, Hyperscan provides the :c:func:`hs_compile_ext_multi` function
these scenarios, Vectorscan provides the :c:func:`hs_compile_ext_multi` function
that allows a set of "extended parameters" to be set on a per-pattern basis.
Extended parameters are specified using an :c:type:`hs_expr_ext_t` structure,
@ -383,18 +383,18 @@ section.
Prefiltering Mode
=================
Hyperscan provides a per-pattern flag, :c:member:`HS_FLAG_PREFILTER`, which can
be used to implement a prefilter for a pattern than Hyperscan would not
Vectorscan provides a per-pattern flag, :c:member:`HS_FLAG_PREFILTER`, which can
be used to implement a prefilter for a pattern than Vectorscan would not
ordinarily support.
This flag instructs Hyperscan to compile an "approximate" version of this
pattern for use in a prefiltering application, even if Hyperscan does not
This flag instructs Vectorscan to compile an "approximate" version of this
pattern for use in a prefiltering application, even if Vectorscan does not
support the pattern in normal operation.
The set of matches returned when this flag is used is guaranteed to be a
superset of the matches specified by the non-prefiltering expression.
If the pattern contains pattern constructs not supported by Hyperscan (such as
If the pattern contains pattern constructs not supported by Vectorscan (such as
zero-width assertions, back-references or conditional references) these
constructs will be replaced internally with broader constructs that may match
more often.
@ -404,7 +404,7 @@ back-reference :regexp:`\\1`. In prefiltering mode, this pattern might be
approximated by having its back-reference replaced with its referent, forming
:regexp:`/\\w+ again \\w+/`.
Furthermore, in prefiltering mode Hyperscan may simplify a pattern that would
Furthermore, in prefiltering mode Vectorscan may simplify a pattern that would
otherwise return a "Pattern too large" error at compile time, or for performance
reasons (subject to the matching guarantee above).
@ -422,22 +422,22 @@ matches for the pattern.
Instruction Set Specialization
******************************
Hyperscan is able to make use of several modern instruction set features found
Vectorscan is able to make use of several modern instruction set features found
on x86 processors to provide improvements in scanning performance.
Some of these features are selected when the library is built; for example,
Hyperscan will use the native ``POPCNT`` instruction on processors where it is
Vectorscan will use the native ``POPCNT`` instruction on processors where it is
available and the library has been optimized for the host architecture.
.. note:: By default, the Hyperscan runtime is built with the ``-march=native``
.. note:: By default, the Vectorscan runtime is built with the ``-march=native``
compiler flag and (where possible) will make use of all instructions known by
the host's C compiler.
To use some instruction set features, however, Hyperscan must build a
To use some instruction set features, however, Vectorscan must build a
specialized database to support them. This means that the target platform must
be specified at pattern compile time.
The Hyperscan compiler API functions all accept an optional
The Vectorscan compiler API functions all accept an optional
:c:type:`hs_platform_info_t` argument, which describes the target platform
for the database to be built. If this argument is NULL, the database will be
targeted at the current host platform.
@ -467,7 +467,7 @@ See :ref:`api_constants` for the full list of CPU tuning and feature flags.
Approximate matching
********************
Hyperscan provides an experimental approximate matching mode, which will match
Vectorscan provides an experimental approximate matching mode, which will match
patterns within a given edit distance. The exact matching behavior is defined as
follows:
@ -492,7 +492,7 @@ follows:
Here are a few examples of approximate matching:
* Pattern :regexp:`/foo/` can match ``foo`` when using regular Hyperscan
* Pattern :regexp:`/foo/` can match ``foo`` when using regular Vectorscan
matching behavior. With approximate matching within edit distance 2, the
pattern will produce matches when scanned against ``foo``, ``foooo``, ``f00``,
``f``, and anything else that lies within edit distance 2 of matching corpora
@ -513,7 +513,7 @@ matching support. Here they are, in a nutshell:
* Reduced pattern support:
* For many patterns, approximate matching is complex and can result in
Hyperscan failing to compile a pattern with a "Pattern too large" error,
Vectorscan failing to compile a pattern with a "Pattern too large" error,
even if the pattern is supported in normal operation.
* Additionally, some patterns cannot be approximately matched because they
reduce to so-called "vacuous" patterns (patterns that match everything). For
@ -548,7 +548,7 @@ Logical Combinations
********************
For situations when a user requires behaviour that depends on the presence or
absence of matches from groups of patterns, Hyperscan provides support for the
absence of matches from groups of patterns, Vectorscan provides support for the
logical combination of patterns in a given pattern set, with three operators:
``NOT``, ``AND`` and ``OR``.
@ -561,7 +561,7 @@ offset is *true* if the expression it refers to is *false* at this offset.
For example, ``NOT 101`` means that expression 101 has not yet matched at this
offset.
A logical combination is passed to Hyperscan at compile time as an expression.
A logical combination is passed to Vectorscan at compile time as an expression.
This combination expression will raise matches at every offset where one of its
sub-expressions matches and the logical value of the whole expression is *true*.
@ -603,7 +603,7 @@ In a logical combination expression:
* Whitespace is ignored.
To use a logical combination expression, it must be passed to one of the
Hyperscan compile functions (:c:func:`hs_compile_multi`,
Vectorscan compile functions (:c:func:`hs_compile_multi`,
:c:func:`hs_compile_ext_multi`) along with the :c:member:`HS_FLAG_COMBINATION` flag,
which identifies the pattern as a logical combination expression. The patterns
referred to in the logical combination expression must be compiled together in
@ -613,7 +613,7 @@ When an expression has the :c:member:`HS_FLAG_COMBINATION` flag set, it ignores
all other flags except the :c:member:`HS_FLAG_SINGLEMATCH` flag and the
:c:member:`HS_FLAG_QUIET` flag.
Hyperscan will accept logical combination expressions at compile time that
Vectorscan will accept logical combination expressions at compile time that
evaluate to *true* when no patterns have matched, and report the match for
combination at end of data if no patterns have matched; for example: ::

View File

@ -1,6 +1,6 @@
# -*- coding: utf-8 -*-
#
# Hyperscan documentation build configuration file, created by
# Vectorscan documentation build configuration file, created by
# sphinx-quickstart on Tue Sep 29 15:59:19 2015.
#
# This file is execfile()d with the current directory set to its
@ -43,8 +43,8 @@ source_suffix = '.rst'
master_doc = 'index'
# General information about the project.
project = u'Hyperscan'
copyright = u'2015-2018, Intel Corporation'
project = u'Vectorscan'
copyright = u'2015-2020, Intel Corporation; 2020-2024, VectorCamp; and other contributors'
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
@ -202,7 +202,7 @@ latex_elements = {
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
('index', 'Hyperscan.tex', u'Hyperscan Documentation',
('index', 'Hyperscan.tex', u'Vectorscan Documentation',
u'Intel Corporation', 'manual'),
]
@ -232,8 +232,8 @@ latex_documents = [
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [
('index', 'hyperscan', u'Hyperscan Documentation',
[u'Intel Corporation'], 1)
('index', 'vectorscan', u'Vectorscan Documentation',
[u'Intel Corporation'], 7)
]
# If true, show URL addresses after external links.
@ -246,8 +246,8 @@ man_pages = [
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
('index', 'Hyperscan', u'Hyperscan Documentation',
u'Intel Corporation', 'Hyperscan', 'High-performance regular expression matcher.',
('index', 'Vectorscan', u'Vectorscan Documentation',
u'Intel Corporation; VectorCamp', 'Vectorscan', 'High-performance regular expression matcher.',
'Miscellaneous'),
]

View File

@ -7,43 +7,41 @@ Getting Started
Very Quick Start
****************
#. Clone Hyperscan ::
#. Clone Vectorscan ::
cd <where-you-want-hyperscan-source>
git clone git://github.com/intel/hyperscan
cd <where-you-want-vectorscan-source>
git clone https://github.com/VectorCamp/vectorscan
#. Configure Hyperscan
#. Configure Vectorscan
Ensure that you have the correct :ref:`dependencies <software>` present,
and then:
::
cd <where-you-want-to-build-hyperscan>
cd <where-you-want-to-build-vectorscan>
mkdir <build-dir>
cd <build-dir>
cmake [-G <generator>] [options] <hyperscan-source-path>
cmake [-G <generator>] [options] <vectorscan-source-path>
Known working generators:
* ``Unix Makefiles`` --- make-compatible makefiles (default on Linux/FreeBSD/Mac OS X)
* ``Ninja`` --- `Ninja <http://martine.github.io/ninja/>`_ build files.
* ``Visual Studio 15 2017`` --- Visual Studio projects
Generators that might work include:
Unsupported generators that might work include:
* ``Xcode`` --- OS X Xcode projects.
#. Build Hyperscan
#. Build Vectorscan
Depending on the generator used:
* ``cmake --build .`` --- will build everything
* ``make -j<jobs>`` --- use makefiles in parallel
* ``ninja`` --- use Ninja build
* ``MsBuild.exe`` --- use Visual Studio MsBuild
* etc.
#. Check Hyperscan
#. Check Vectorscan
Run the Hyperscan unit tests: ::
Run the Vectorscan unit tests: ::
bin/unit-hyperscan
@ -55,20 +53,23 @@ Requirements
Hardware
========
Hyperscan will run on x86 processors in 64-bit (Intel\ |reg| 64 Architecture) and
32-bit (IA-32 Architecture) modes.
Vectorscan will run on x86 processors in 64-bit (Intel\ |reg| 64 Architecture) and
32-bit (IA-32 Architecture) modes as well as Arm v8.0+ aarch64, and POWER 8+ ppc64le
machines.
Hyperscan is a high performance software library that takes advantage of recent
Intel architecture advances. At a minimum, support for Supplemental Streaming
SIMD Extensions 3 (SSSE3) is required, which should be available on any modern
x86 processor.
architecture advances.
Additionally, Hyperscan can make use of:
Additionally, Vectorscan can make use of:
* Intel Streaming SIMD Extensions 4.2 (SSE4.2)
* the POPCNT instruction
* Bit Manipulation Instructions (BMI, BMI2)
* Intel Advanced Vector Extensions 2 (Intel AVX2)
* Arm NEON
* Arm SVE and SVE2
* Arm SVE2 BITPERM
* IBM Power8/Power9 VSX
if present.
@ -79,40 +80,34 @@ These can be determined at library compile time, see :ref:`target_arch`.
Software
========
As a software library, Hyperscan doesn't impose any particular runtime
software requirements, however to build the Hyperscan library we require a
modern C and C++ compiler -- in particular, Hyperscan requires C99 and C++11
As a software library, Vectorscan doesn't impose any particular runtime
software requirements, however to build the Vectorscan library we require a
modern C and C++ compiler -- in particular, Vectorscan requires C99 and C++17
compiler support. The supported compilers are:
* GCC, v4.8.1 or higher
* Clang, v3.4 or higher (with libstdc++ or libc++)
* Intel C++ Compiler v15 or higher
* Visual C++ 2017 Build Tools
* GCC, v9 or higher
* Clang, v5 or higher (with libstdc++ or libc++)
Examples of operating systems that Hyperscan is known to work on include:
Examples of operating systems that Vectorscan is known to work on include:
Linux:
* Ubuntu 14.04 LTS or newer
* Ubuntu 20.04 LTS or newer
* RedHat/CentOS 7 or newer
* Fedora 38 or newer
* Debian 10
FreeBSD:
* 10.0 or newer
Windows:
* 8 or newer
Mac OS X:
* 10.8 or newer, using XCode/Clang
Hyperscan *may* compile and run on other platforms, but there is no guarantee.
We currently have experimental support for Windows using Intel C++ Compiler
or Visual Studio 2017.
Vectorscan *may* compile and run on other platforms, but there is no guarantee.
In addition, the following software is required for compiling the Hyperscan library:
In addition, the following software is required for compiling the Vectorscan library:
======================================================= =========== ======================================
Dependency Version Notes
@ -132,20 +127,20 @@ Ragel, you may use Cygwin to build it from source.
Boost Headers
-------------
Compiling Hyperscan depends on a recent version of the Boost C++ header
Compiling Vectorscan depends on a recent version of the Boost C++ header
library. If the Boost libraries are installed on the build machine in the
usual paths, CMake will find them. If the Boost libraries are not installed,
the location of the Boost source tree can be specified during the CMake
configuration step using the ``BOOST_ROOT`` variable (described below).
Another alternative is to put a copy of (or a symlink to) the boost
subdirectory in ``<hyperscan-source-path>/include/boost``.
subdirectory in ``<vectorscanscan-source-path>/include/boost``.
For example: for the Boost-1.59.0 release: ::
ln -s boost_1_59_0/boost <hyperscan-source-path>/include/boost
ln -s boost_1_59_0/boost <vectorscan-source-path>/include/boost
As Hyperscan uses the header-only parts of Boost, it is not necessary to
As Vectorscan uses the header-only parts of Boost, it is not necessary to
compile the Boost libraries.
CMake Configuration
@ -168,11 +163,12 @@ Common options for CMake include:
| | Valid options are Debug, Release, RelWithDebInfo, |
| | and MinSizeRel. Default is RelWithDebInfo. |
+------------------------+----------------------------------------------------+
| BUILD_SHARED_LIBS | Build Hyperscan as a shared library instead of |
| BUILD_SHARED_LIBS | Build Vectorscan as a shared library instead of |
| | the default static library. |
| | Default: Off |
+------------------------+----------------------------------------------------+
| BUILD_STATIC_AND_SHARED| Build both static and shared Hyperscan libs. |
| | Default off. |
| BUILD_STATIC_LIBS | Build Vectorscan as a static library. |
| | Default: On |
+------------------------+----------------------------------------------------+
| BOOST_ROOT | Location of Boost source tree. |
+------------------------+----------------------------------------------------+
@ -180,12 +176,64 @@ Common options for CMake include:
+------------------------+----------------------------------------------------+
| FAT_RUNTIME | Build the :ref:`fat runtime<fat_runtime>`. Default |
| | true on Linux, not available elsewhere. |
| | Default: Off |
+------------------------+----------------------------------------------------+
| USE_CPU_NATIVE | Native CPU detection is off by default, however it |
| | is possible to build a performance-oriented non-fat|
| | library tuned to your CPU. |
| | Default: Off |
+------------------------+----------------------------------------------------+
| SANITIZE | Use libasan sanitizer to detect possible bugs. |
| | Valid options are address, memory and undefined. |
+------------------------+----------------------------------------------------+
| SIMDE_BACKEND | Enable SIMDe backend. If this is chosen all native |
| | (SSE/AVX/AVX512/Neon/SVE/VSX) backends will be |
| | disabled and a SIMDe SSE4.2 emulation backend will |
| | be enabled. This will enable Vectorscan to build |
| | and run on architectures without SIMD. |
| | Default: Off |
+------------------------+----------------------------------------------------+
| SIMDE_NATIVE | Enable SIMDe native emulation of x86 SSE4.2 |
| | intrinsics on the building platform. That is, |
| | SSE4.2 intrinsics will be emulated using Neon on |
| | an Arm platform, or VSX on a Power platform, etc. |
| | Default: Off |
+------------------------+----------------------------------------------------+
X86 platform specific options include:
+------------------------+----------------------------------------------------+
| Variable | Description |
+========================+====================================================+
| BUILD_AVX2 | Enable code for AVX2. |
+------------------------+----------------------------------------------------+
| BUILD_AVX512 | Enable code for AVX512. Implies BUILD_AVX2. |
+------------------------+----------------------------------------------------+
| BUILD_AVX512VBMI | Enable code for AVX512 with VBMI extension. Implies|
| | BUILD_AVX512. |
+------------------------+----------------------------------------------------+
Arm platform specific options include:
+------------------------+----------------------------------------------------+
| Variable | Description |
+========================+====================================================+
| BUILD_SVE | Enable code for SVE, like on AWS Graviton3 CPUs. |
| | Not much code is ported just for SVE , but enabling|
| | SVE code production, does improve code generation, |
| | see Benchmarks. |
+------------------------+----------------------------------------------------+
| BUILD_SVE2 | Enable code for SVE2, implies BUILD_SVE. Most |
| | non-Neon code is written for SVE2. |
+------------------------+----------------------------------------------------+
| BUILD_SVE2_BITPERM | Enable code for SVE2_BITPERM harwdare feature, |
| | implies BUILD_SVE2. |
+------------------------+----------------------------------------------------+
For example, to generate a ``Debug`` build: ::
cd <build-dir>
cmake -DCMAKE_BUILD_TYPE=Debug <hyperscan-source-path>
cmake -DCMAKE_BUILD_TYPE=Debug <vectorscan-source-path>
@ -193,7 +241,7 @@ Build Type
----------
CMake determines a number of features for a build based on the Build Type.
Hyperscan defaults to ``RelWithDebInfo``, i.e. "release with debugging
Vectorscan defaults to ``RelWithDebInfo``, i.e. "release with debugging
information". This is a performance optimized build without runtime assertions
but with debug symbols enabled.
@ -201,7 +249,7 @@ The other types of builds are:
* ``Release``: as above, but without debug symbols
* ``MinSizeRel``: a stripped release build
* ``Debug``: used when developing Hyperscan. Includes runtime assertions
* ``Debug``: used when developing Vectorscan. Includes runtime assertions
(which has a large impact on runtime performance), and will also enable
some other build features like building internal unit
tests.
@ -211,7 +259,7 @@ The other types of builds are:
Target Architecture
-------------------
Unless using the :ref:`fat runtime<fat_runtime>`, by default Hyperscan will be
Unless using the :ref:`fat runtime<fat_runtime>`, by default Vectorscan will be
compiled to target the instruction set of the processor of the machine that
being used for compilation. This is done via the use of ``-march=native``. The
result of this means that a library built on one machine may not work on a
@ -223,7 +271,7 @@ CMake, or ``CMAKE_C_FLAGS`` and ``CMAKE_CXX_FLAGS`` on the CMake command line. F
example, to set the instruction subsets up to ``SSE4.2`` using GCC 4.8: ::
cmake -DCMAKE_C_FLAGS="-march=corei7" \
-DCMAKE_CXX_FLAGS="-march=corei7" <hyperscan-source-path>
-DCMAKE_CXX_FLAGS="-march=corei7" <vectorscan-source-path>
For more information, refer to :ref:`instr_specialization`.
@ -232,17 +280,17 @@ For more information, refer to :ref:`instr_specialization`.
Fat Runtime
-----------
A feature introduced in Hyperscan v4.4 is the ability for the Hyperscan
A feature introduced in Hyperscan v4.4 is the ability for the Vectorscan
library to dispatch the most appropriate runtime code for the host processor.
This feature is called the "fat runtime", as a single Hyperscan library
This feature is called the "fat runtime", as a single Vectorscan library
contains multiple copies of the runtime code for different instruction sets.
.. note::
The fat runtime feature is only available on Linux. Release builds of
Hyperscan will default to having the fat runtime enabled where supported.
Vectorscan will default to having the fat runtime enabled where supported.
When building the library with the fat runtime, the Hyperscan runtime code
When building the library with the fat runtime, the Vectorscan runtime code
will be compiled multiple times for these different instruction sets, and
these compiled objects are combined into one library. There are no changes to
how user applications are built against this library.
@ -254,11 +302,11 @@ resolved so that the right version of each API function is used. There is no
impact on function call performance, as this check and resolution is performed
by the ELF loader once when the binary is loaded.
If the Hyperscan library is used on x86 systems without ``SSSE3``, the runtime
If the Vectorscan library is used on x86 systems without ``SSSE4.2``, the runtime
API functions will resolve to functions that return :c:member:`HS_ARCH_ERROR`
instead of potentially executing illegal instructions. The API function
:c:func:`hs_valid_platform` can be used by application writers to determine if
the current platform is supported by Hyperscan.
the current platform is supported by Vectorscan.
As of this release, the variants of the runtime that are built, and the CPU
capability that is required, are the following:
@ -299,6 +347,11 @@ capability that is required, are the following:
cmake -DBUILD_AVX512VBMI=on <...>
Vectorscan add support for Arm processors and SVE, SV2 and SVE2_BITPERM.
example: ::
cmake -DBUILD_SVE=ON -DBUILD_SVE2=ON -DBUILD_SVE2_BITPERM=ON <...>
As the fat runtime requires compiler, libc, and binutils support, at this time
it will only be enabled for Linux builds where the compiler supports the
`indirect function "ifunc" function attribute

View File

@ -1,5 +1,5 @@
###############################################
Hyperscan |version| Developer's Reference Guide
Vectorscan |version| Developer's Reference Guide
###############################################
-------

View File

@ -5,11 +5,11 @@
Introduction
############
Hyperscan is a software regular expression matching engine designed with
Vectorscan is a software regular expression matching engine designed with
high performance and flexibility in mind. It is implemented as a library that
exposes a straightforward C API.
The Hyperscan API itself is composed of two major components:
The Vectorscan API itself is composed of two major components:
***********
Compilation
@ -17,7 +17,7 @@ Compilation
These functions take a group of regular expressions, along with identifiers and
option flags, and compile them into an immutable database that can be used by
the Hyperscan scanning API. This compilation process performs considerable
the Vectorscan scanning API. This compilation process performs considerable
analysis and optimization work in order to build a database that will match the
given expressions efficiently.
@ -36,8 +36,8 @@ See :ref:`compilation` for more detail.
Scanning
********
Once a Hyperscan database has been created, it can be used to scan data in
memory. Hyperscan provides several scanning modes, depending on whether the
Once a Vectorscan database has been created, it can be used to scan data in
memory. Vectorscan provides several scanning modes, depending on whether the
data to be scanned is available as a single contiguous block, whether it is
distributed amongst several blocks in memory at the same time, or whether it is
to be scanned as a sequence of blocks in a stream.
@ -45,7 +45,7 @@ to be scanned as a sequence of blocks in a stream.
Matches are delivered to the application via a user-supplied callback function
that is called synchronously for each match.
For a given database, Hyperscan provides several guarantees:
For a given database, Vectorscan provides several guarantees:
* No memory allocations occur at runtime with the exception of two
fixed-size allocations, both of which should be done ahead of time for
@ -56,7 +56,7 @@ For a given database, Hyperscan provides several guarantees:
call.
- **Stream state**: in streaming mode only, some state space is required to
store data that persists between scan calls for each stream. This allows
Hyperscan to track matches that span multiple blocks of data.
Vectorscan to track matches that span multiple blocks of data.
* The sizes of the scratch space and stream state (in streaming mode) required
for a given database are fixed and determined at database compile time. This
@ -64,7 +64,7 @@ For a given database, Hyperscan provides several guarantees:
time, and these structures can be pre-allocated if required for performance
reasons.
* Any pattern that has successfully been compiled by the Hyperscan compiler can
* Any pattern that has successfully been compiled by the Vectorscan compiler can
be scanned against any input. There are no internal resource limits or other
limitations at runtime that could cause a scan call to return an error.
@ -74,12 +74,12 @@ See :ref:`runtime` for more detail.
Tools
*****
Some utilities for testing and benchmarking Hyperscan are included with the
Some utilities for testing and benchmarking Vectorscan are included with the
library. See :ref:`tools` for more information.
************
Example Code
************
Some simple example code demonstrating the use of the Hyperscan API is
available in the ``examples/`` subdirectory of the Hyperscan distribution.
Some simple example code demonstrating the use of the Vectorscan API is
available in the ``examples/`` subdirectory of the Vectorscan distribution.

View File

@ -4,7 +4,7 @@
Performance Considerations
##########################
Hyperscan supports a wide range of patterns in all three scanning modes. It is
Vectorscan supports a wide range of patterns in all three scanning modes. It is
capable of extremely high levels of performance, but certain patterns can
reduce performance markedly.
@ -25,7 +25,7 @@ For example, caseless matching of :regexp:`/abc/` can be written as:
* :regexp:`/(?i)abc(?-i)/`
* :regexp:`/abc/i`
Hyperscan is capable of handling all these constructs. Unless there is a
Vectorscan is capable of handling all these constructs. Unless there is a
specific reason otherwise, do not rewrite patterns from one form to another.
As another example, matching of :regexp:`/foo(bar|baz)(frotz)?/` can be
@ -41,24 +41,24 @@ Library usage
.. tip:: Do not hand-optimize library usage.
The Hyperscan library is capable of dealing with small writes, unusually large
The Vectorscan library is capable of dealing with small writes, unusually large
and small pattern sets, etc. Unless there is a specific performance problem
with some usage of the library, it is best to use Hyperscan in a simple and
with some usage of the library, it is best to use Vectorscan in a simple and
direct fashion. For example, it is unlikely for there to be much benefit in
buffering input to the library into larger blocks unless streaming writes are
tiny (say, 1-2 bytes at a time).
Unlike many other pattern matching products, Hyperscan will run faster with
Unlike many other pattern matching products, Vectorscan will run faster with
small numbers of patterns and slower with large numbers of patterns in a smooth
fashion (as opposed to, typically, running at a moderate speed up to some fixed
limit then either breaking or running half as fast).
Hyperscan also provides high-throughput matching with a single thread of
control per core; if a database runs at 3.0 Gbps in Hyperscan it means that a
Vectorscan also provides high-throughput matching with a single thread of
control per core; if a database runs at 3.0 Gbps in Vectorscan it means that a
3000-bit block of data will be scanned in 1 microsecond in a single thread of
control, not that it is required to scan 22 3000-bit blocks of data in 22
microseconds. Thus, it is not usually necessary to buffer data to supply
Hyperscan with available parallelism.
Vectorscan with available parallelism.
********************
Block-based matching
@ -72,7 +72,7 @@ accumulated before processing, it should be scanned in block rather than in
streaming mode.
Unnecessary use of streaming mode reduces the number of optimizations that can
be applied in Hyperscan and may make some patterns run slower.
be applied in Vectorscan and may make some patterns run slower.
If there is a mixture of 'block' and 'streaming' mode patterns, these should be
scanned in separate databases except in the case that the streaming patterns
@ -107,7 +107,7 @@ Allocate scratch ahead of time
Scratch allocation is not necessarily a cheap operation. Since it is the first
time (after compilation or deserialization) that a pattern database is used,
Hyperscan performs some validation checks inside :c:func:`hs_alloc_scratch` and
Vectorscan performs some validation checks inside :c:func:`hs_alloc_scratch` and
must also allocate memory.
Therefore, it is important to ensure that :c:func:`hs_alloc_scratch` is not
@ -329,7 +329,7 @@ Consequently, :regexp:`/foo.*bar/L` with a check on start of match values after
the callback is considerably more expensive and general than
:regexp:`/foo.{300}bar/`.
Similarly, the :c:member:`hs_expr_ext::min_length` extended parameter can be
Similarly, the :cpp:member:`hs_expr_ext::min_length` extended parameter can be
used to specify a lower bound on the length of the matches for a pattern. Using
this facility may be more lightweight in some circumstances than using the SOM
flag and post-confirming match length in the calling application.

View File

@ -6,35 +6,35 @@ Preface
Overview
********
Hyperscan is a regular expression engine designed to offer high performance, the
Vectorscan is a regular expression engine designed to offer high performance, the
ability to match multiple expressions simultaneously and flexibility in
scanning operation.
Patterns are provided to a compilation interface which generates an immutable
pattern database. The scan interface then can be used to scan a target data
buffer for the given patterns, returning any matching results from that data
buffer. Hyperscan also provides a streaming mode, in which matches that span
buffer. Vectorscan also provides a streaming mode, in which matches that span
several blocks in a stream are detected.
This document is designed to facilitate code-level integration of the Hyperscan
This document is designed to facilitate code-level integration of the Vectorscan
library with existing or new applications.
:ref:`intro` is a short overview of the Hyperscan library, with more detail on
the Hyperscan API provided in the subsequent sections: :ref:`compilation` and
:ref:`intro` is a short overview of the Vectorscan library, with more detail on
the Vectorscan API provided in the subsequent sections: :ref:`compilation` and
:ref:`runtime`.
:ref:`perf` provides details on various factors which may impact the
performance of a Hyperscan integration.
performance of a Vectorscan integration.
:ref:`api_constants` and :ref:`api_files` provides a detailed summary of the
Hyperscan Application Programming Interface (API).
Vectorscan Application Programming Interface (API).
********
Audience
********
This guide is aimed at developers interested in integrating Hyperscan into an
application. For information on building the Hyperscan library, see the Quick
This guide is aimed at developers interested in integrating Vectorscan into an
application. For information on building the Vectorscan library, see the Quick
Start Guide.
***********

View File

@ -4,7 +4,7 @@
Scanning for Patterns
#####################
Hyperscan provides three different scanning modes, each with its own scan
Vectorscan provides three different scanning modes, each with its own scan
function beginning with ``hs_scan``. In addition, streaming mode has a number
of other API functions for managing stream state.
@ -33,8 +33,8 @@ See :c:type:`match_event_handler` for more information.
Streaming Mode
**************
The core of the Hyperscan streaming runtime API consists of functions to open,
scan, and close Hyperscan data streams:
The core of the Vectorscan streaming runtime API consists of functions to open,
scan, and close Vectorscan data streams:
* :c:func:`hs_open_stream`: allocates and initializes a new stream for scanning.
@ -57,14 +57,14 @@ will return immediately with :c:member:`HS_SCAN_TERMINATED`. The caller must
still call :c:func:`hs_close_stream` to complete the clean-up process for that
stream.
Streams exist in the Hyperscan library so that pattern matching state can be
Streams exist in the Vectorscan library so that pattern matching state can be
maintained across multiple blocks of target data -- without maintaining this
state, it would not be possible to detect patterns that span these blocks of
data. This, however, does come at the cost of requiring an amount of storage
per-stream (the size of this storage is fixed at compile time), and a slight
performance penalty in some cases to manage the state.
While Hyperscan does always support a strict ordering of multiple matches,
While Vectorscan does always support a strict ordering of multiple matches,
streaming matches will not be delivered at offsets before the current stream
write, with the exception of zero-width asserts, where constructs such as
:regexp:`\\b` and :regexp:`$` can cause a match on the final character of a
@ -76,7 +76,7 @@ Stream Management
=================
In addition to :c:func:`hs_open_stream`, :c:func:`hs_scan_stream`, and
:c:func:`hs_close_stream`, the Hyperscan API provides a number of other
:c:func:`hs_close_stream`, the Vectorscan API provides a number of other
functions for the management of streams:
* :c:func:`hs_reset_stream`: resets a stream to its initial state; this is
@ -98,10 +98,10 @@ A stream object is allocated as a fixed size region of memory which has been
sized to ensure that no memory allocations are required during scan
operations. When the system is under memory pressure, it may be useful to reduce
the memory consumed by streams that are not expected to be used soon. The
Hyperscan API provides calls for translating a stream to and from a compressed
Vectorscan API provides calls for translating a stream to and from a compressed
representation for this purpose. The compressed representation differs from the
full stream object as it does not reserve space for components which are not
required given the current stream state. The Hyperscan API functions for this
required given the current stream state. The Vectorscan API functions for this
functionality are:
* :c:func:`hs_compress_stream`: fills the provided buffer with a compressed
@ -157,7 +157,7 @@ scanned in block mode.
Scratch Space
*************
While scanning data, Hyperscan needs a small amount of temporary memory to store
While scanning data, Vectorscan needs a small amount of temporary memory to store
on-the-fly internal data. This amount is unfortunately too large to fit on the
stack, particularly for embedded applications, and allocating memory dynamically
is too expensive, so a pre-allocated "scratch" space must be provided to the
@ -170,7 +170,7 @@ databases, only a single scratch region is necessary: in this case, calling
will ensure that the scratch space is large enough to support scanning against
any of the given databases.
While the Hyperscan library is re-entrant, the use of scratch spaces is not.
While the Vectorscan library is re-entrant, the use of scratch spaces is not.
For example, if by design it is deemed necessary to run recursive or nested
scanning (say, from the match callback function), then an additional scratch
space is required for that context.
@ -219,11 +219,11 @@ For example:
Custom Allocators
*****************
By default, structures used by Hyperscan at runtime (scratch space, stream
By default, structures used by Vectorscan at runtime (scratch space, stream
state, etc) are allocated with the default system allocators, usually
``malloc()`` and ``free()``.
The Hyperscan API provides a facility for changing this behaviour to support
The Vectorscan API provides a facility for changing this behaviour to support
applications that use custom memory allocators.
These functions are:

View File

@ -4,7 +4,7 @@
Serialization
#############
For some applications, compiling Hyperscan pattern databases immediately prior
For some applications, compiling Vectorscan pattern databases immediately prior
to use is not an appropriate design. Some users may wish to:
* Compile pattern databases on a different host;
@ -14,9 +14,9 @@ to use is not an appropriate design. Some users may wish to:
* Control the region of memory in which the compiled database is located.
Hyperscan pattern databases are not completely flat in memory: they contain
Vectorscan pattern databases are not completely flat in memory: they contain
pointers and have specific alignment requirements. Therefore, they cannot be
copied (or otherwise relocated) directly. To enable these use cases, Hyperscan
copied (or otherwise relocated) directly. To enable these use cases, Vectorscan
provides functionality for serializing and deserializing compiled pattern
databases.
@ -40,10 +40,10 @@ The API provides the following functions:
returns a string containing information about the database. This call is
analogous to :c:func:`hs_database_info`.
.. note:: Hyperscan performs both version and platform compatibility checks
.. note:: Vectorscan performs both version and platform compatibility checks
upon deserialization. The :c:func:`hs_deserialize_database` and
:c:func:`hs_deserialize_database_at` functions will only permit the
deserialization of databases compiled with (a) the same version of Hyperscan
deserialization of databases compiled with (a) the same version of Vectorscan
and (b) platform features supported by the current host platform. See
:ref:`instr_specialization` for more information on platform specialization.
@ -51,17 +51,17 @@ The API provides the following functions:
The Runtime Library
===================
The main Hyperscan library (``libhs``) contains both the compiler and runtime
portions of the library. This means that in order to support the Hyperscan
The main Vectorscan library (``libhs``) contains both the compiler and runtime
portions of the library. This means that in order to support the Vectorscan
compiler, which is written in C++, it requires C++ linkage and has a
dependency on the C++ standard library.
Many embedded applications require only the scanning ("runtime") portion of the
Hyperscan library. In these cases, pattern compilation generally takes place on
Vectorscan library. In these cases, pattern compilation generally takes place on
another host, and serialized pattern databases are delivered to the application
for use.
To support these applications without requiring the C++ dependency, a
runtime-only version of the Hyperscan library, called ``libhs_runtime``, is also
runtime-only version of the Vectorscan library, called ``libhs_runtime``, is also
distributed. This library does not depend on the C++ standard library and
provides all Hyperscan functions other that those used to compile databases.
provides all Vectorscan functions other that those used to compile databases.

View File

@ -4,14 +4,14 @@
Tools
#####
This section describes the set of utilities included with the Hyperscan library.
This section describes the set of utilities included with the Vectorscan library.
********************
Quick Check: hscheck
********************
The ``hscheck`` tool allows the user to quickly check whether Hyperscan supports
a group of patterns. If a pattern is rejected by Hyperscan's compiler, the
The ``hscheck`` tool allows the user to quickly check whether Vectorscan supports
a group of patterns. If a pattern is rejected by Vectorscan's compiler, the
compile error is provided on standard output.
For example, given the following three patterns (the last of which contains a
@ -34,7 +34,7 @@ syntax error) in a file called ``/tmp/test``::
Benchmarker: hsbench
********************
The ``hsbench`` tool provides an easy way to measure Hyperscan's performance
The ``hsbench`` tool provides an easy way to measure Vectorscan's performance
for a particular set of patterns and corpus of data to be scanned.
Patterns are supplied in the format described below in
@ -44,7 +44,7 @@ easy control of how a corpus is broken into blocks and streams.
.. note:: A group of Python scripts for constructing corpora databases from
various input types, such as PCAP network traffic captures or text files, can
be found in the Hyperscan source tree in ``tools/hsbench/scripts``.
be found in the Vectorscan source tree in ``tools/hsbench/scripts``.
Running hsbench
===============
@ -56,7 +56,7 @@ produce output like this::
$ hsbench -e /tmp/patterns -c /tmp/corpus.db
Signatures: /tmp/patterns
Hyperscan info: Version: 4.3.1 Features: AVX2 Mode: STREAM
Vectorscan info: Version: 5.4.11 Features: AVX2 Mode: STREAM
Expression count: 200
Bytecode size: 342,540 bytes
Database CRC: 0x6cd6b67c
@ -77,7 +77,7 @@ takes to perform all twenty scans. The number of repeats can be changed with the
``-n`` argument, and the results of each scan will be displayed if the
``--per-scan`` argument is specified.
To benchmark Hyperscan on more than one core, you can supply a list of cores
To benchmark Vectorscan on more than one core, you can supply a list of cores
with the ``-T`` argument, which will instruct ``hsbench`` to start one
benchmark thread per core given and compute the throughput from the time taken
to complete all of them.
@ -91,17 +91,17 @@ Correctness Testing: hscollider
*******************************
The ``hscollider`` tool, or Pattern Collider, provides a way to verify
Hyperscan's matching behaviour. It does this by compiling and scanning patterns
Vectorscan's matching behaviour. It does this by compiling and scanning patterns
(either singly or in groups) against known corpora and comparing the results
against another engine (the "ground truth"). Two sources of ground truth for
comparison are available:
* The PCRE library (http://pcre.org/).
* An NFA simulation run on Hyperscan's compile-time graph representation. This
* An NFA simulation run on Vectorscan's compile-time graph representation. This
is used if PCRE cannot support the pattern or if PCRE execution fails due to
a resource limit.
Much of Hyperscan's testing infrastructure is built on ``hscollider``, and the
Much of Vectorscan's testing infrastructure is built on ``hscollider``, and the
tool is designed to take advantage of multiple cores and provide considerable
flexibility in controlling the test. These options are described in the help
(``hscollider -h``) and include:
@ -116,11 +116,11 @@ flexibility in controlling the test. These options are described in the help
Using hscollider to debug a pattern
===================================
One common use-case for ``hscollider`` is to determine whether Hyperscan will
One common use-case for ``hscollider`` is to determine whether Vectorscan will
match a pattern in the expected location, and whether this accords with PCRE's
behaviour for the same case.
Here is an example. We put our pattern in a file in Hyperscan's pattern
Here is an example. We put our pattern in a file in Vectorscan's pattern
format::
$ cat /tmp/pat
@ -172,7 +172,7 @@ individual matches are displayed in the output::
Total elapsed time: 0.00522815 secs.
We can see from this output that both PCRE and Hyperscan find matches ending at
We can see from this output that both PCRE and Vectorscan find matches ending at
offset 33 and 45, and so ``hscollider`` considers this test case to have
passed.
@ -180,13 +180,13 @@ passed.
corpus alignment 0, and ``-T 1`` instructs us to only use one thread.)
.. note:: In default operation, PCRE produces only one match for a scan, unlike
Hyperscan's automata semantics. The ``hscollider`` tool uses libpcre's
"callout" functionality to match Hyperscan's semantics.
Vectorscan's automata semantics. The ``hscollider`` tool uses libpcre's
"callout" functionality to match Vectorscan's semantics.
Running a larger scan test
==========================
A set of patterns for testing purposes are distributed with Hyperscan, and these
A set of patterns for testing purposes are distributed with Vectorscan, and these
can be tested via ``hscollider`` on an in-tree build. Two CMake targets are
provided to do this easily:
@ -202,10 +202,10 @@ Debugging: hsdump
*****************
When built in debug mode (using the CMake directive ``CMAKE_BUILD_TYPE`` set to
``Debug``), Hyperscan includes support for dumping information about its
``Debug``), Vectorscan includes support for dumping information about its
internals during pattern compilation with the ``hsdump`` tool.
This information is mostly of use to Hyperscan developers familiar with the
This information is mostly of use to Vectorscan developers familiar with the
library's internal structure, but can be used to diagnose issues with patterns
and provide more information in bug reports.
@ -215,7 +215,7 @@ and provide more information in bug reports.
Pattern Format
**************
All of the Hyperscan tools accept patterns in the same format, read from plain
All of the Vectorscan tools accept patterns in the same format, read from plain
text files with one pattern per line. Each line looks like this:
* ``<integer id>:/<regex>/<flags>``
@ -227,12 +227,12 @@ For example::
3:/^.{10,20}hatstand/m
The integer ID is the value that will be reported when a match is found by
Hyperscan and must be unique.
Vectorscan and must be unique.
The pattern itself is a regular expression in PCRE syntax; see
:ref:`compilation` for more information on supported features.
The flags are single characters that map to Hyperscan flags as follows:
The flags are single characters that map to Vectorscan flags as follows:
========= ================================= ===========
Character API Flag Description
@ -256,7 +256,7 @@ between braces, separated by commas. For example::
1:/hatstand.*teakettle/s{min_offset=50,max_offset=100}
All Hyperscan tools will accept a pattern file (or a directory containing
All Vectorscan tools will accept a pattern file (or a directory containing
pattern files) with the ``-e`` argument. If no further arguments constraining
the pattern set are given, all patterns in those files are used.

View File

@ -605,8 +605,9 @@ double eval_set(Benchmark &bench, const Sigdata &sigs, unsigned int mode,
scan_time = measure_stream_time(bench, repeatCount);
}
size_t bytes = bench.bytes();
size_t matches = bench.matches();
if (diagnose) {
size_t matches = bench.matches();
std::ios::fmtflags f(cout.flags());
cout << "Scan time " << std::fixed << std::setprecision(3) << scan_time
<< " sec, Scanned " << bytes * repeatCount << " bytes, Throughput "

View File

@ -4,7 +4,7 @@ libdir=@CMAKE_INSTALL_PREFIX@/@CMAKE_INSTALL_LIBDIR@
includedir=@CMAKE_INSTALL_PREFIX@/@CMAKE_INSTALL_INCLUDEDIR@
Name: libhs
Description: Intel(R) Hyperscan Library
Description: A portable fork of the high-performance regular expression matching library
Version: @HS_VERSION@
Libs: -L${libdir} -lhs
Cflags: -I${includedir}/hs

2
simde

@ -1 +1 @@
Subproject commit aae22459fa284e9fc2b7d4b8e4571afa0418125f
Subproject commit 416091ebdb9e901b29d026633e73167d6353a0b0

View File

@ -542,14 +542,13 @@ u32 crc32c_sb8_64_bit(u32 running_crc, const unsigned char* p_buf,
// Main aligned loop, processes eight bytes at a time.
u32 term1, term2;
for (size_t li = 0; li < running_length/8; li++) {
u32 block = *(const u32 *)p_buf;
crc ^= block;
p_buf += 4;
term1 = crc_tableil8_o88[crc & 0x000000FF] ^
u32 term1 = crc_tableil8_o88[crc & 0x000000FF] ^
crc_tableil8_o80[(crc >> 8) & 0x000000FF];
term2 = crc >> 16;
u32 term2 = crc >> 16;
crc = term1 ^
crc_tableil8_o72[term2 & 0x000000FF] ^
crc_tableil8_o64[(term2 >> 8) & 0x000000FF];

View File

@ -79,21 +79,18 @@ static UNUSED
const platform_t hs_current_platform_no_avx2 = {
HS_PLATFORM_NOAVX2 |
HS_PLATFORM_NOAVX512 |
HS_PLATFORM_NOAVX512VBMI |
0,
HS_PLATFORM_NOAVX512VBMI
};
static UNUSED
const platform_t hs_current_platform_no_avx512 = {
HS_PLATFORM_NOAVX512 |
HS_PLATFORM_NOAVX512VBMI |
0,
HS_PLATFORM_NOAVX512VBMI
};
static UNUSED
const platform_t hs_current_platform_no_avx512vbmi = {
HS_PLATFORM_NOAVX512VBMI |
0,
HS_PLATFORM_NOAVX512VBMI
};
/*

View File

@ -1,5 +1,6 @@
/*
* Copyright (c) 2016-2020, Intel Corporation
* Copyright (c) 2024, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
@ -30,6 +31,39 @@
#include "hs_common.h"
#include "hs_runtime.h"
#include "ue2common.h"
/* Streamlining the dispatch to eliminate runtime checking/branching:
* What we want to do is, first call to the function will run the resolve
* code and set the static resolved/dispatch pointer to point to the
* correct function. Subsequent calls to the function will go directly to
* the resolved ptr. The simplest way to accomplish this is, to
* initially set the pointer to the resolve function.
* To accomplish this in a manner invisible to the user,
* we do involve some rather ugly/confusing macros in here.
* There are four macros that assemble the code for each function
* we want to dispatch in this manner:
* CREATE_DISPATCH
* this generates the declarations for the candidate target functions,
* for the fat_dispatch function pointer, for the resolve_ function,
* points the function pointer to the resolve function, and contains
* most of the definition of the resolve function. The very end of the
* resolve function is completed by the next macro, because in the
* CREATE_DISPATCH macro we have the argument list with the arg declarations,
* which is needed to generate correct function signatures, but we
* can't generate from this, in a macro, a _call_ to one of those functions.
* CONNECT_ARGS_1
* this macro fills in the actual call at the end of the resolve function,
* with the correct arg list. hence the name connect args.
* CONNECT_DISPATCH_2
* this macro likewise gives up the beginning of the definition of the
* actual entry point function (the 'real name' that's called by the user)
* but again in the pass-through call, cannot invoke the target without
* getting the arg list , which is supplied by the final macro,
* CONNECT_ARGS_3
*
*/
#if defined(ARCH_IA32) || defined(ARCH_X86_64)
#include "util/arch/x86/cpuid_inline.h"
#include "util/join.h"
@ -57,30 +91,38 @@
return (RTYPE)HS_ARCH_ERROR; \
} \
\
/* resolver */ \
static RTYPE (*JOIN(resolve_, NAME)(void))(__VA_ARGS__) { \
if (check_avx512vbmi()) { \
return JOIN(avx512vbmi_, NAME); \
} \
if (check_avx512()) { \
return JOIN(avx512_, NAME); \
} \
if (check_avx2()) { \
return JOIN(avx2_, NAME); \
} \
if (check_sse42() && check_popcnt()) { \
return JOIN(corei7_, NAME); \
} \
if (check_ssse3()) { \
return JOIN(core2_, NAME); \
} \
/* anything else is fail */ \
return JOIN(error_, NAME); \
} \
/* dispatch routing pointer for this function */ \
/* initially point it at the resolve function */ \
static RTYPE JOIN(resolve_, NAME)(__VA_ARGS__); \
static RTYPE (* JOIN(fat_dispatch_, NAME))(__VA_ARGS__) = \
&JOIN(resolve_, NAME); \
\
/* function */ \
HS_PUBLIC_API \
RTYPE NAME(__VA_ARGS__) __attribute__((ifunc("resolve_" #NAME)))
/* resolver */ \
static RTYPE JOIN(resolve_, NAME)(__VA_ARGS__) { \
if (check_avx512vbmi()) { \
fat_dispatch_ ## NAME = &JOIN(avx512vbmi_, NAME); \
} \
else if (check_avx512()) { \
fat_dispatch_ ## NAME = &JOIN(avx512_, NAME); \
} \
else if (check_avx2()) { \
fat_dispatch_ ## NAME = &JOIN(avx2_, NAME); \
} \
else if (check_sse42() && check_popcnt()) { \
fat_dispatch_ ## NAME = &JOIN(corei7_, NAME); \
} \
else if (check_ssse3()) { \
fat_dispatch_ ## NAME = &JOIN(core2_, NAME); \
} else { \
/* anything else is fail */ \
fat_dispatch_ ## NAME = &JOIN(error_, NAME); \
} \
/* the rest of the function is completed in the CONNECT_ARGS_1 macro. */
#elif defined(ARCH_AARCH64)
#include "util/arch/arm/cpuid_inline.h"
@ -97,99 +139,226 @@
return (RTYPE)HS_ARCH_ERROR; \
} \
\
/* resolver */ \
static RTYPE (*JOIN(resolve_, NAME)(void))(__VA_ARGS__) { \
if (check_sve2()) { \
return JOIN(sve2_, NAME); \
} \
if (check_sve()) { \
return JOIN(sve_, NAME); \
} \
if (check_neon()) { \
return JOIN(neon_, NAME); \
} \
/* anything else is fail */ \
return JOIN(error_, NAME); \
} \
/* dispatch routing pointer for this function */ \
/* initially point it at the resolve function */ \
static RTYPE JOIN(resolve_, NAME)(__VA_ARGS__); \
static RTYPE (* JOIN(fat_dispatch_, NAME))(__VA_ARGS__) = \
&JOIN(resolve_, NAME); \
\
/* function */ \
HS_PUBLIC_API \
RTYPE NAME(__VA_ARGS__) __attribute__((ifunc("resolve_" #NAME)))
/* resolver */ \
static RTYPE JOIN(resolve_, NAME)(__VA_ARGS__) { \
if (check_sve2()) { \
fat_dispatch_ ## NAME = &JOIN(sve2_, NAME); \
} \
else if (check_sve()) { \
fat_dispatch_ ## NAME = &JOIN(sve_, NAME); \
} \
else if (check_neon()) { \
fat_dispatch_ ## NAME = &JOIN(neon_, NAME); \
} else { \
/* anything else is fail */ \
fat_dispatch_ ## NAME = &JOIN(error_, NAME); \
} \
/* the rest of the function is completed in the CONNECT_ARGS_1 macro. */
#endif
#define CONNECT_ARGS_1(RTYPE, NAME, ...) \
return (*fat_dispatch_ ## NAME)(__VA_ARGS__); \
} \
#define CONNECT_DISPATCH_2(RTYPE, NAME, ...) \
/* new function */ \
HS_PUBLIC_API \
RTYPE NAME(__VA_ARGS__) { \
#define CONNECT_ARGS_3(RTYPE, NAME, ...) \
return (*fat_dispatch_ ## NAME)(__VA_ARGS__); \
} \
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
/* this gets a bit ugly to compose the static redirect functions,
* as we necessarily need first the typed arg list and then just the arg
* names, twice in a row, to define the redirect function and the
* dispatch function call */
CREATE_DISPATCH(hs_error_t, hs_scan, const hs_database_t *db, const char *data,
unsigned length, unsigned flags, hs_scratch_t *scratch,
match_event_handler onEvent, void *userCtx);
CONNECT_ARGS_1(hs_error_t, hs_scan, db, data, length, flags, scratch, onEvent, userCtx);
CONNECT_DISPATCH_2(hs_error_t, hs_scan, const hs_database_t *db, const char *data,
unsigned length, unsigned flags, hs_scratch_t *scratch,
match_event_handler onEvent, void *userCtx);
CONNECT_ARGS_3(hs_error_t, hs_scan, db, data, length, flags, scratch, onEvent, userCtx);
CREATE_DISPATCH(hs_error_t, hs_stream_size, const hs_database_t *database,
size_t *stream_size);
CONNECT_ARGS_1(hs_error_t, hs_stream_size, database, stream_size);
CONNECT_DISPATCH_2(hs_error_t, hs_stream_size, const hs_database_t *database,
size_t *stream_size);
CONNECT_ARGS_3(hs_error_t, hs_stream_size, database, stream_size);
CREATE_DISPATCH(hs_error_t, hs_database_size, const hs_database_t *db,
size_t *size);
CONNECT_ARGS_1(hs_error_t, hs_database_size, db, size);
CONNECT_DISPATCH_2(hs_error_t, hs_database_size, const hs_database_t *db,
size_t *size);
CONNECT_ARGS_3(hs_error_t, hs_database_size, db, size);
CREATE_DISPATCH(hs_error_t, dbIsValid, const hs_database_t *db);
CONNECT_ARGS_1(hs_error_t, dbIsValid, db);
CONNECT_DISPATCH_2(hs_error_t, dbIsValid, const hs_database_t *db);
CONNECT_ARGS_3(hs_error_t, dbIsValid, db);
CREATE_DISPATCH(hs_error_t, hs_free_database, hs_database_t *db);
CONNECT_ARGS_1(hs_error_t, hs_free_database, db);
CONNECT_DISPATCH_2(hs_error_t, hs_free_database, hs_database_t *db);
CONNECT_ARGS_3(hs_error_t, hs_free_database, db);
CREATE_DISPATCH(hs_error_t, hs_open_stream, const hs_database_t *db,
unsigned int flags, hs_stream_t **stream);
CONNECT_ARGS_1(hs_error_t, hs_open_stream, db, flags, stream);
CONNECT_DISPATCH_2(hs_error_t, hs_open_stream, const hs_database_t *db,
unsigned int flags, hs_stream_t **stream);
CONNECT_ARGS_3(hs_error_t, hs_open_stream, db, flags, stream);
CREATE_DISPATCH(hs_error_t, hs_scan_stream, hs_stream_t *id, const char *data,
unsigned int length, unsigned int flags, hs_scratch_t *scratch,
match_event_handler onEvent, void *ctxt);
CONNECT_ARGS_1(hs_error_t, hs_scan_stream, id, data, length, flags, scratch, onEvent, ctxt);
CONNECT_DISPATCH_2(hs_error_t, hs_scan_stream, hs_stream_t *id, const char *data,
unsigned int length, unsigned int flags, hs_scratch_t *scratch,
match_event_handler onEvent, void *ctxt);
CONNECT_ARGS_3(hs_error_t, hs_scan_stream, id, data, length, flags, scratch, onEvent, ctxt);
CREATE_DISPATCH(hs_error_t, hs_close_stream, hs_stream_t *id,
hs_scratch_t *scratch, match_event_handler onEvent, void *ctxt);
CONNECT_ARGS_1(hs_error_t, hs_close_stream, id, scratch, onEvent, ctxt);
CONNECT_DISPATCH_2(hs_error_t, hs_close_stream, hs_stream_t *id,
hs_scratch_t *scratch, match_event_handler onEvent, void *ctxt);
CONNECT_ARGS_3(hs_error_t, hs_close_stream, id, scratch, onEvent, ctxt);
CREATE_DISPATCH(hs_error_t, hs_scan_vector, const hs_database_t *db,
const char *const *data, const unsigned int *length,
unsigned int count, unsigned int flags, hs_scratch_t *scratch,
match_event_handler onevent, void *context);
CONNECT_ARGS_1(hs_error_t, hs_scan_vector, db, data, length, count, flags, scratch, onevent, context);
CONNECT_DISPATCH_2(hs_error_t, hs_scan_vector, const hs_database_t *db,
const char *const *data, const unsigned int *length,
unsigned int count, unsigned int flags, hs_scratch_t *scratch,
match_event_handler onevent, void *context);
CONNECT_ARGS_3(hs_error_t, hs_scan_vector, db, data, length, count, flags, scratch, onevent, context);
CREATE_DISPATCH(hs_error_t, hs_database_info, const hs_database_t *db, char **info);
CONNECT_ARGS_1(hs_error_t, hs_database_info, db, info);
CONNECT_DISPATCH_2(hs_error_t, hs_database_info, const hs_database_t *db, char **info);
CONNECT_ARGS_3(hs_error_t, hs_database_info, db, info);
CREATE_DISPATCH(hs_error_t, hs_copy_stream, hs_stream_t **to_id,
const hs_stream_t *from_id);
CONNECT_ARGS_1(hs_error_t, hs_copy_stream, to_id, from_id);
CONNECT_DISPATCH_2(hs_error_t, hs_copy_stream, hs_stream_t **to_id,
const hs_stream_t *from_id);
CONNECT_ARGS_3(hs_error_t, hs_copy_stream, to_id, from_id);
CREATE_DISPATCH(hs_error_t, hs_reset_stream, hs_stream_t *id,
unsigned int flags, hs_scratch_t *scratch,
match_event_handler onEvent, void *context);
CONNECT_ARGS_1(hs_error_t, hs_reset_stream, id, flags, scratch, onEvent, context);
CONNECT_DISPATCH_2(hs_error_t, hs_reset_stream, hs_stream_t *id,
unsigned int flags, hs_scratch_t *scratch,
match_event_handler onEvent, void *context);
CONNECT_ARGS_3(hs_error_t, hs_reset_stream, id, flags, scratch, onEvent, context);
CREATE_DISPATCH(hs_error_t, hs_reset_and_copy_stream, hs_stream_t *to_id,
const hs_stream_t *from_id, hs_scratch_t *scratch,
match_event_handler onEvent, void *context);
CONNECT_ARGS_1(hs_error_t, hs_reset_and_copy_stream, to_id, from_id, scratch, onEvent, context);
CONNECT_DISPATCH_2(hs_error_t, hs_reset_and_copy_stream, hs_stream_t *to_id,
const hs_stream_t *from_id, hs_scratch_t *scratch,
match_event_handler onEvent, void *context);
CONNECT_ARGS_3(hs_error_t, hs_reset_and_copy_stream, to_id, from_id, scratch, onEvent, context);
CREATE_DISPATCH(hs_error_t, hs_serialize_database, const hs_database_t *db,
char **bytes, size_t *length);
CONNECT_ARGS_1(hs_error_t, hs_serialize_database, db, bytes, length);
CONNECT_DISPATCH_2(hs_error_t, hs_serialize_database, const hs_database_t *db,
char **bytes, size_t *length);
CONNECT_ARGS_3(hs_error_t, hs_serialize_database, db, bytes, length);
CREATE_DISPATCH(hs_error_t, hs_deserialize_database, const char *bytes,
const size_t length, hs_database_t **db);
CONNECT_ARGS_1(hs_error_t, hs_deserialize_database, bytes, length, db);
CONNECT_DISPATCH_2(hs_error_t, hs_deserialize_database, const char *bytes,
const size_t length, hs_database_t **db);
CONNECT_ARGS_3(hs_error_t, hs_deserialize_database, bytes, length, db);
CREATE_DISPATCH(hs_error_t, hs_deserialize_database_at, const char *bytes,
const size_t length, hs_database_t *db);
CONNECT_ARGS_1(hs_error_t, hs_deserialize_database_at, bytes, length, db);
CONNECT_DISPATCH_2(hs_error_t, hs_deserialize_database_at, const char *bytes,
const size_t length, hs_database_t *db);
CONNECT_ARGS_3(hs_error_t, hs_deserialize_database_at, bytes, length, db);
CREATE_DISPATCH(hs_error_t, hs_serialized_database_info, const char *bytes,
size_t length, char **info);
CONNECT_ARGS_1(hs_error_t, hs_serialized_database_info, bytes, length, info);
CONNECT_DISPATCH_2(hs_error_t, hs_serialized_database_info, const char *bytes,
size_t length, char **info);
CONNECT_ARGS_3(hs_error_t, hs_serialized_database_info, bytes, length, info);
CREATE_DISPATCH(hs_error_t, hs_serialized_database_size, const char *bytes,
const size_t length, size_t *deserialized_size);
CONNECT_ARGS_1(hs_error_t, hs_serialized_database_size, bytes, length, deserialized_size);
CONNECT_DISPATCH_2(hs_error_t, hs_serialized_database_size, const char *bytes,
const size_t length, size_t *deserialized_size);
CONNECT_ARGS_3(hs_error_t, hs_serialized_database_size, bytes, length, deserialized_size);
CREATE_DISPATCH(hs_error_t, hs_compress_stream, const hs_stream_t *stream,
char *buf, size_t buf_space, size_t *used_space);
CONNECT_ARGS_1(hs_error_t, hs_compress_stream, stream,
buf, buf_space, used_space);
CONNECT_DISPATCH_2(hs_error_t, hs_compress_stream, const hs_stream_t *stream,
char *buf, size_t buf_space, size_t *used_space);
CONNECT_ARGS_3(hs_error_t, hs_compress_stream, stream,
buf, buf_space, used_space);
CREATE_DISPATCH(hs_error_t, hs_expand_stream, const hs_database_t *db,
hs_stream_t **stream, const char *buf,size_t buf_size);
CONNECT_ARGS_1(hs_error_t, hs_expand_stream, db, stream, buf,buf_size);
CONNECT_DISPATCH_2(hs_error_t, hs_expand_stream, const hs_database_t *db,
hs_stream_t **stream, const char *buf,size_t buf_size);
CONNECT_ARGS_3(hs_error_t, hs_expand_stream, db, stream, buf,buf_size);
CREATE_DISPATCH(hs_error_t, hs_reset_and_expand_stream, hs_stream_t *to_stream,
const char *buf, size_t buf_size, hs_scratch_t *scratch,
match_event_handler onEvent, void *context);
CONNECT_ARGS_1(hs_error_t, hs_reset_and_expand_stream, to_stream,
buf, buf_size, scratch, onEvent, context);
CONNECT_DISPATCH_2(hs_error_t, hs_reset_and_expand_stream, hs_stream_t *to_stream,
const char *buf, size_t buf_size, hs_scratch_t *scratch,
match_event_handler onEvent, void *context);
CONNECT_ARGS_3(hs_error_t, hs_reset_and_expand_stream, to_stream,
buf, buf_size, scratch, onEvent, context);
/** INTERNALS **/
CREATE_DISPATCH(u32, Crc32c_ComputeBuf, u32 inCrc32, const void *buf, size_t bufLen);
CONNECT_ARGS_1(u32, Crc32c_ComputeBuf, inCrc32, buf, bufLen);
CONNECT_DISPATCH_2(u32, Crc32c_ComputeBuf, u32 inCrc32, const void *buf, size_t bufLen);
CONNECT_ARGS_3(u32, Crc32c_ComputeBuf, inCrc32, buf, bufLen);
#pragma GCC diagnostic pop
#pragma GCC diagnostic pop

View File

@ -298,7 +298,7 @@ void get_conf_stride_4(const u8 *itPtr, UNUSED const u8 *start_ptr,
static really_inline
void do_confirm_fdr(u64a *conf, u8 offset, hwlmcb_rv_t *control,
const u32 *confBase, const struct FDR_Runtime_Args *a,
const u8 *ptr, u32 *last_match_id, struct zone *z) {
const u8 *ptr, u32 *last_match_id, const struct zone *z) {
const u8 bucket = 8;
if (likely(!*conf)) {

View File

@ -52,14 +52,14 @@ u32 TeddyEngineDescription::getDefaultFloodSuffixLength() const {
void getTeddyDescriptions(vector<TeddyEngineDescription> *out) {
static const TeddyEngineDef defns[] = {
{ 3, 0 | HS_CPU_FEATURES_AVX2, 1, 16, false },
{ 4, 0 | HS_CPU_FEATURES_AVX2, 1, 16, true },
{ 5, 0 | HS_CPU_FEATURES_AVX2, 2, 16, false },
{ 6, 0 | HS_CPU_FEATURES_AVX2, 2, 16, true },
{ 7, 0 | HS_CPU_FEATURES_AVX2, 3, 16, false },
{ 8, 0 | HS_CPU_FEATURES_AVX2, 3, 16, true },
{ 9, 0 | HS_CPU_FEATURES_AVX2, 4, 16, false },
{ 10, 0 | HS_CPU_FEATURES_AVX2, 4, 16, true },
{ 3, HS_CPU_FEATURES_AVX2, 1, 16, false },
{ 4, HS_CPU_FEATURES_AVX2, 1, 16, true },
{ 5, HS_CPU_FEATURES_AVX2, 2, 16, false },
{ 6, HS_CPU_FEATURES_AVX2, 2, 16, true },
{ 7, HS_CPU_FEATURES_AVX2, 3, 16, false },
{ 8, HS_CPU_FEATURES_AVX2, 3, 16, true },
{ 9, HS_CPU_FEATURES_AVX2, 4, 16, false },
{ 10, HS_CPU_FEATURES_AVX2, 4, 16, true },
{ 11, 0, 1, 8, false },
{ 12, 0, 1, 8, true },
{ 13, 0, 2, 8, false },

View File

@ -400,7 +400,7 @@ char castleFindMatch(const struct Castle *c, const u64a begin, const u64a end,
}
static really_inline
u64a subCastleNextMatch(const struct Castle *c, void *full_state,
u64a subCastleNextMatch(const struct Castle *c, const void *full_state,
void *stream_state, const u64a loc,
const u32 subIdx) {
DEBUG_PRINTF("subcastle %u\n", subIdx);
@ -489,7 +489,6 @@ char castleMatchLoop(const struct Castle *c, const u64a begin, const u64a end,
// full_state (scratch).
u64a offset = end; // min offset of next match
u32 activeIdx = 0;
mmbit_clear(matching, c->numRepeats);
if (c->exclusive) {
u8 *active = (u8 *)stream_state;
@ -497,7 +496,7 @@ char castleMatchLoop(const struct Castle *c, const u64a begin, const u64a end,
for (u32 i = mmbit_iterate(groups, c->numGroups, MMB_INVALID);
i != MMB_INVALID; i = mmbit_iterate(groups, c->numGroups, i)) {
u8 *cur = active + i * c->activeIdxSize;
activeIdx = partial_load_u32(cur, c->activeIdxSize);
u32 activeIdx = partial_load_u32(cur, c->activeIdxSize);
u64a match = subCastleNextMatch(c, full_state, stream_state,
loc, activeIdx);
set_matching(c, match, groups, matching, c->numGroups, i,
@ -907,7 +906,6 @@ s64a castleLastKillLoc(const struct Castle *c, struct mq *q) {
if (castleRevScan(c, q->history, sp + hlen, ep + hlen, &loc)) {
return (s64a)loc - hlen;
}
ep = 0;
}
return sp - 1; /* the repeats are never killed */

View File

@ -655,7 +655,8 @@ buildCastle(const CastleProto &proto,
if (!stale_iter.empty()) {
c->staleIterOffset = verify_u32(ptr - base_ptr);
copy_bytes(ptr, stale_iter);
ptr += byte_length(stale_iter);
// Removed unused increment operation
// ptr += byte_length(stale_iter);
}
return nfa;

View File

@ -332,7 +332,7 @@ void EXPIRE_ESTATE_FN(const IMPL_NFA_T *limex, struct CONTEXT_T *ctx,
// UE-1636) need to guard cyclic tug-accepts as well.
static really_inline
char LIMEX_INACCEPT_FN(const IMPL_NFA_T *limex, STATE_T state,
union RepeatControl *repeat_ctrl, char *repeat_state,
const union RepeatControl *repeat_ctrl, const char *repeat_state,
u64a offset, ReportID report) {
assert(limex);
@ -382,7 +382,7 @@ char LIMEX_INACCEPT_FN(const IMPL_NFA_T *limex, STATE_T state,
static really_inline
char LIMEX_INANYACCEPT_FN(const IMPL_NFA_T *limex, STATE_T state,
union RepeatControl *repeat_ctrl, char *repeat_state,
const union RepeatControl *repeat_ctrl, const char *repeat_state,
u64a offset) {
assert(limex);

View File

@ -1572,7 +1572,7 @@ u32 findMaxVarShift(const build_info &args, u32 nShifts) {
static
int getLimexScore(const build_info &args, u32 nShifts) {
const NGHolder &h = args.h;
u32 maxVarShift = nShifts;
u32 maxVarShift;
int score = 0;
score += SHIFT_COST * nShifts;

View File

@ -512,7 +512,7 @@ size_t find_last_bad(const struct mpv_kilopuff *kp, const u8 *buf,
verm_restart:;
assert(buf[curr] == kp->u.verm.c);
size_t test = curr;
size_t test;
if (curr + min_rep < length) {
test = curr + min_rep;
} else {
@ -534,7 +534,7 @@ size_t find_last_bad(const struct mpv_kilopuff *kp, const u8 *buf,
m128 hi = kp->u.shuf.mask_hi;
shuf_restart:
assert(do_single_shufti(lo, hi, buf[curr]));
size_t test = curr;
size_t test;
if (curr + min_rep < length) {
test = curr + min_rep;
} else {
@ -556,7 +556,7 @@ size_t find_last_bad(const struct mpv_kilopuff *kp, const u8 *buf,
const m128 mask1 = kp->u.truffle.mask1;
const m128 mask2 = kp->u.truffle.mask2;
truffle_restart:;
size_t test = curr;
size_t test;
if (curr + min_rep < length) {
test = curr + min_rep;
} else {
@ -582,7 +582,7 @@ size_t find_last_bad(const struct mpv_kilopuff *kp, const u8 *buf,
nverm_restart:;
assert(buf[curr] != kp->u.verm.c);
size_t test = curr;
size_t test;
if (curr + min_rep < length) {
test = curr + min_rep;
} else {
@ -607,7 +607,7 @@ size_t find_last_bad(const struct mpv_kilopuff *kp, const u8 *buf,
}
static really_inline
void restartKilo(const struct mpv *m, UNUSED u8 *active, u8 *reporters,
void restartKilo(const struct mpv *m, UNUSED const u8 *active, u8 *reporters,
struct mpv_decomp_state *dstate, struct mpv_pq_item *pq,
const u8 *buf, u64a prev_limit, size_t buf_length, u32 i) {
const struct mpv_kilopuff *kp = (const void *)(m + 1);

View File

@ -94,9 +94,6 @@ u32 repeatRecurTable(struct RepeatStateInfo *info, const depth &repeatMax,
static
u32 findOptimalPatchSize(struct RepeatStateInfo *info, const depth &repeatMax,
const u32 minPeriod, u32 rv) {
u32 cnt = 0;
u32 patch_bits = 0;
u32 total_size = 0;
u32 min = ~0U;
u32 patch_len = 0;
@ -105,11 +102,11 @@ u32 findOptimalPatchSize(struct RepeatStateInfo *info, const depth &repeatMax,
}
for (u32 i = minPeriod; i <= rv; i++) {
cnt = ((u32)repeatMax + (i - 1)) / i + 1;
u32 cnt = ((u32)repeatMax + (i - 1)) / i + 1;
// no bit packing version
patch_bits = calcPackedBits(info->table[i]);
total_size = (patch_bits + 7U) / 8U * cnt;
u32 patch_bits = calcPackedBits(info->table[i]);
u32 total_size = (patch_bits + 7U) / 8U * cnt;
if (total_size < min) {
patch_len = i;

View File

@ -154,7 +154,7 @@ char fireReports(const struct sheng *sh, NfaCallback cb, void *ctxt,
return MO_CONTINUE_MATCHING; /* continue execution */
}
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
// Sheng32
static really_inline
const struct sheng32 *get_sheng32(const struct NFA *n) {
@ -351,7 +351,7 @@ char fireReports64(const struct sheng64 *sh, NfaCallback cb, void *ctxt,
}
return MO_CONTINUE_MATCHING; /* continue execution */
}
#endif // end of HAVE_AVX512VBMI
#endif // end of HAVE_AVX512VBMI || HAVE_SVE
/* include Sheng function definitions */
#include "sheng_defs.h"
@ -871,7 +871,7 @@ char nfaExecSheng_expandState(UNUSED const struct NFA *nfa, void *dest,
return 0;
}
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
// Sheng32
static really_inline
char runSheng32Cb(const struct sheng32 *sh, NfaCallback cb, void *ctxt,
@ -1874,4 +1874,4 @@ char nfaExecSheng64_expandState(UNUSED const struct NFA *nfa, void *dest,
*(u8 *)dest = *(const u8 *)src;
return 0;
}
#endif // end of HAVE_AVX512VBMI
#endif // end of HAVE_AVX512VBMI || HAVE_SVE

View File

@ -58,7 +58,7 @@ char nfaExecSheng_reportCurrent(const struct NFA *n, struct mq *q);
char nfaExecSheng_B(const struct NFA *n, u64a offset, const u8 *buffer,
size_t length, NfaCallback cb, void *context);
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define nfaExecSheng32_B_Reverse NFA_API_NO_IMPL
#define nfaExecSheng32_zombie_status NFA_API_ZOMBIE_NO_IMPL
@ -106,8 +106,7 @@ char nfaExecSheng64_reportCurrent(const struct NFA *n, struct mq *q);
char nfaExecSheng64_B(const struct NFA *n, u64a offset, const u8 *buffer,
size_t length, NfaCallback cb, void *context);
#else // !HAVE_AVX512VBMI
#else // !HAVE_AVX512VBMI && !HAVE_SVE
#define nfaExecSheng32_B_Reverse NFA_API_NO_IMPL
#define nfaExecSheng32_zombie_status NFA_API_ZOMBIE_NO_IMPL
@ -138,6 +137,7 @@ char nfaExecSheng64_B(const struct NFA *n, u64a offset, const u8 *buffer,
#define nfaExecSheng64_testEOD NFA_API_NO_IMPL
#define nfaExecSheng64_reportCurrent NFA_API_NO_IMPL
#define nfaExecSheng64_B NFA_API_NO_IMPL
#endif // end of HAVE_AVX512VBMI
#endif // end of HAVE_AVX512VBMI || defined(HAVE_SVE)
#endif /* SHENG_H_ */

View File

@ -52,7 +52,7 @@ u8 hasInterestingStates(const u8 a, const u8 b, const u8 c, const u8 d) {
return (a | b | c | d) & (SHENG_STATE_FLAG_MASK);
}
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
static really_inline
u8 isDeadState32(const u8 a) {
return a & SHENG32_STATE_DEAD;
@ -108,7 +108,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define SHENG_IMPL sheng_cod
#define DEAD_FUNC isDeadState
#define ACCEPT_FUNC isAcceptState
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_cod
#define DEAD_FUNC32 isDeadState32
#define ACCEPT_FUNC32 isAcceptState32
@ -121,7 +121,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef SHENG_IMPL
#undef DEAD_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef DEAD_FUNC32
#undef ACCEPT_FUNC32
@ -135,7 +135,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define SHENG_IMPL sheng_co
#define DEAD_FUNC dummyFunc
#define ACCEPT_FUNC isAcceptState
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_co
#define DEAD_FUNC32 dummyFunc
#define ACCEPT_FUNC32 isAcceptState32
@ -148,7 +148,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef SHENG_IMPL
#undef DEAD_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef DEAD_FUNC32
#undef ACCEPT_FUNC32
@ -162,7 +162,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define SHENG_IMPL sheng_samd
#define DEAD_FUNC isDeadState
#define ACCEPT_FUNC isAcceptState
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_samd
#define DEAD_FUNC32 isDeadState32
#define ACCEPT_FUNC32 isAcceptState32
@ -175,7 +175,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef SHENG_IMPL
#undef DEAD_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef DEAD_FUNC32
#undef ACCEPT_FUNC32
@ -189,7 +189,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define SHENG_IMPL sheng_sam
#define DEAD_FUNC dummyFunc
#define ACCEPT_FUNC isAcceptState
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_sam
#define DEAD_FUNC32 dummyFunc
#define ACCEPT_FUNC32 isAcceptState32
@ -202,7 +202,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef SHENG_IMPL
#undef DEAD_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef DEAD_FUNC32
#undef ACCEPT_FUNC32
@ -216,7 +216,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define SHENG_IMPL sheng_nmd
#define DEAD_FUNC isDeadState
#define ACCEPT_FUNC dummyFunc
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_nmd
#define DEAD_FUNC32 isDeadState32
#define ACCEPT_FUNC32 dummyFunc
@ -229,7 +229,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef SHENG_IMPL
#undef DEAD_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef DEAD_FUNC32
#undef ACCEPT_FUNC32
@ -243,7 +243,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define SHENG_IMPL sheng_nm
#define DEAD_FUNC dummyFunc
#define ACCEPT_FUNC dummyFunc
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_nm
#define DEAD_FUNC32 dummyFunc
#define ACCEPT_FUNC32 dummyFunc
@ -256,7 +256,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef SHENG_IMPL
#undef DEAD_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef DEAD_FUNC32
#undef ACCEPT_FUNC32
@ -277,7 +277,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define INNER_ACCEL_FUNC isAccelState
#define OUTER_ACCEL_FUNC dummyFunc
#define ACCEPT_FUNC isAcceptState
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_4_coda
#define INTERESTING_FUNC32 hasInterestingStates32
#define INNER_DEAD_FUNC32 isDeadState32
@ -296,7 +296,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef INNER_ACCEL_FUNC
#undef OUTER_ACCEL_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef INTERESTING_FUNC32
#undef INNER_DEAD_FUNC32
@ -316,7 +316,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define INNER_ACCEL_FUNC dummyFunc
#define OUTER_ACCEL_FUNC dummyFunc
#define ACCEPT_FUNC isAcceptState
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_4_cod
#define INTERESTING_FUNC32 hasInterestingStates32
#define INNER_DEAD_FUNC32 isDeadState32
@ -339,7 +339,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef INNER_ACCEL_FUNC
#undef OUTER_ACCEL_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef INTERESTING_FUNC32
#undef INNER_DEAD_FUNC32
@ -363,7 +363,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define INNER_ACCEL_FUNC isAccelState
#define OUTER_ACCEL_FUNC dummyFunc
#define ACCEPT_FUNC isAcceptState
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_4_coa
#define INTERESTING_FUNC32 hasInterestingStates32
#define INNER_DEAD_FUNC32 dummyFunc
@ -382,7 +382,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef INNER_ACCEL_FUNC
#undef OUTER_ACCEL_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef INTERESTING_FUNC32
#undef INNER_DEAD_FUNC32
@ -402,7 +402,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define INNER_ACCEL_FUNC dummyFunc
#define OUTER_ACCEL_FUNC dummyFunc
#define ACCEPT_FUNC isAcceptState
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_4_co
#define INTERESTING_FUNC32 hasInterestingStates32
#define INNER_DEAD_FUNC32 dummyFunc
@ -425,7 +425,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef INNER_ACCEL_FUNC
#undef OUTER_ACCEL_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef INTERESTING_FUNC32
#undef INNER_DEAD_FUNC32
@ -449,7 +449,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define INNER_ACCEL_FUNC isAccelState
#define OUTER_ACCEL_FUNC dummyFunc
#define ACCEPT_FUNC isAcceptState
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_4_samda
#define INTERESTING_FUNC32 hasInterestingStates32
#define INNER_DEAD_FUNC32 isDeadState32
@ -468,7 +468,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef INNER_ACCEL_FUNC
#undef OUTER_ACCEL_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef INTERESTING_FUNC32
#undef INNER_DEAD_FUNC32
@ -488,7 +488,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define INNER_ACCEL_FUNC dummyFunc
#define OUTER_ACCEL_FUNC dummyFunc
#define ACCEPT_FUNC isAcceptState
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_4_samd
#define INTERESTING_FUNC32 hasInterestingStates32
#define INNER_DEAD_FUNC32 isDeadState32
@ -511,7 +511,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef INNER_ACCEL_FUNC
#undef OUTER_ACCEL_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef INTERESTING_FUNC32
#undef INNER_DEAD_FUNC32
@ -535,7 +535,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define INNER_ACCEL_FUNC isAccelState
#define OUTER_ACCEL_FUNC dummyFunc
#define ACCEPT_FUNC isAcceptState
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_4_sama
#define INTERESTING_FUNC32 hasInterestingStates32
#define INNER_DEAD_FUNC32 dummyFunc
@ -554,7 +554,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef INNER_ACCEL_FUNC
#undef OUTER_ACCEL_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef INTERESTING_FUNC32
#undef INNER_DEAD_FUNC32
@ -574,7 +574,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define INNER_ACCEL_FUNC dummyFunc
#define OUTER_ACCEL_FUNC dummyFunc
#define ACCEPT_FUNC isAcceptState
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_4_sam
#define INTERESTING_FUNC32 hasInterestingStates32
#define INNER_DEAD_FUNC32 dummyFunc
@ -597,7 +597,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef INNER_ACCEL_FUNC
#undef OUTER_ACCEL_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef INTERESTING_FUNC32
#undef INNER_DEAD_FUNC32
@ -623,7 +623,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define INNER_ACCEL_FUNC dummyFunc
#define OUTER_ACCEL_FUNC isAccelState
#define ACCEPT_FUNC dummyFunc
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_4_nmda
#define INTERESTING_FUNC32 dummyFunc4
#define INNER_DEAD_FUNC32 dummyFunc
@ -642,7 +642,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef INNER_ACCEL_FUNC
#undef OUTER_ACCEL_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef INTERESTING_FUNC32
#undef INNER_DEAD_FUNC32
@ -662,7 +662,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define INNER_ACCEL_FUNC dummyFunc
#define OUTER_ACCEL_FUNC dummyFunc
#define ACCEPT_FUNC dummyFunc
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_4_nmd
#define INTERESTING_FUNC32 dummyFunc4
#define INNER_DEAD_FUNC32 dummyFunc
@ -685,7 +685,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef INNER_ACCEL_FUNC
#undef OUTER_ACCEL_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef INTERESTING_FUNC32
#undef INNER_DEAD_FUNC32
@ -712,7 +712,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#define INNER_ACCEL_FUNC dummyFunc
#define OUTER_ACCEL_FUNC dummyFunc
#define ACCEPT_FUNC dummyFunc
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#define SHENG32_IMPL sheng32_4_nm
#define INTERESTING_FUNC32 dummyFunc4
#define INNER_DEAD_FUNC32 dummyFunc
@ -735,7 +735,7 @@ u8 dummyFunc(UNUSED const u8 a) {
#undef INNER_ACCEL_FUNC
#undef OUTER_ACCEL_FUNC
#undef ACCEPT_FUNC
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
#undef SHENG32_IMPL
#undef INTERESTING_FUNC32
#undef INNER_DEAD_FUNC32

View File

@ -96,7 +96,7 @@ char SHENG_IMPL(u8 *state, NfaCallback cb, void *ctxt, const struct sheng *s,
return MO_CONTINUE_MATCHING;
}
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
static really_inline
char SHENG32_IMPL(u8 *state, NfaCallback cb, void *ctxt,
const struct sheng32 *s,
@ -114,14 +114,28 @@ char SHENG32_IMPL(u8 *state, NfaCallback cb, void *ctxt,
}
DEBUG_PRINTF("Scanning %lli bytes\n", (s64a)(end - start));
#if defined(HAVE_SVE)
const svbool_t lane_pred_32 = svwhilelt_b8(0, 32);
svuint8_t cur_state = svdup_u8(*state);
svuint8_t tbl_mask = svdup_u8((unsigned char)0x1F);
const m512 *masks = s->succ_masks;
#else
m512 cur_state = set1_64x8(*state);
const m512 *masks = s->succ_masks;
#endif
while (likely(cur_buf != end)) {
const u8 c = *cur_buf;
#if defined(HAVE_SVE)
svuint8_t succ_mask = svld1(lane_pred_32, (const u8*)(masks + c));
cur_state = svtbl(succ_mask, svand_x(svptrue_b8(), tbl_mask, cur_state));
const u8 tmp = svlastb(lane_pred_32, cur_state);
#else
const m512 succ_mask = masks[c];
cur_state = vpermb512(cur_state, succ_mask);
const u8 tmp = movd512(cur_state);
#endif
DEBUG_PRINTF("c: %02hhx '%c'\n", c, ourisprint(c) ? c : '?');
DEBUG_PRINTF("s: %u (flag: %u)\n", tmp & SHENG32_STATE_MASK,
@ -153,7 +167,11 @@ char SHENG32_IMPL(u8 *state, NfaCallback cb, void *ctxt,
}
cur_buf++;
}
#if defined(HAVE_SVE)
*state = svlastb(lane_pred_32, cur_state);
#else
*state = movd512(cur_state);
#endif
*scan_end = cur_buf;
return MO_CONTINUE_MATCHING;
}
@ -175,14 +193,28 @@ char SHENG64_IMPL(u8 *state, NfaCallback cb, void *ctxt,
}
DEBUG_PRINTF("Scanning %lli bytes\n", (s64a)(end - start));
#if defined(HAVE_SVE)
const svbool_t lane_pred_64 = svwhilelt_b8(0, 64);
svuint8_t cur_state = svdup_u8(*state);
svuint8_t tbl_mask = svdup_u8((unsigned char)0x3F);
const m512 *masks = s->succ_masks;
#else
m512 cur_state = set1_64x8(*state);
const m512 *masks = s->succ_masks;
#endif
while (likely(cur_buf != end)) {
const u8 c = *cur_buf;
#if defined(HAVE_SVE)
svuint8_t succ_mask = svld1(lane_pred_64, (const u8*)(masks + c));
cur_state = svtbl(succ_mask, svand_x(svptrue_b8(), tbl_mask, cur_state));
const u8 tmp = svlastb(lane_pred_64, cur_state);
#else
const m512 succ_mask = masks[c];
cur_state = vpermb512(cur_state, succ_mask);
const u8 tmp = movd512(cur_state);
#endif
DEBUG_PRINTF("c: %02hhx '%c'\n", c, ourisprint(c) ? c : '?');
DEBUG_PRINTF("s: %u (flag: %u)\n", tmp & SHENG64_STATE_MASK,
@ -214,7 +246,11 @@ char SHENG64_IMPL(u8 *state, NfaCallback cb, void *ctxt,
}
cur_buf++;
}
#if defined(HAVE_SVE)
*state = svlastb(lane_pred_64, cur_state);
#else
*state = movd512(cur_state);
#endif
*scan_end = cur_buf;
return MO_CONTINUE_MATCHING;
}

View File

@ -283,7 +283,7 @@ char SHENG_IMPL(u8 *state, NfaCallback cb, void *ctxt, const struct sheng *s,
return MO_CONTINUE_MATCHING;
}
#if defined(HAVE_AVX512VBMI)
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
static really_inline
char SHENG32_IMPL(u8 *state, NfaCallback cb, void *ctxt,
const struct sheng32 *s,
@ -320,8 +320,15 @@ char SHENG32_IMPL(u8 *state, NfaCallback cb, void *ctxt,
return MO_CONTINUE_MATCHING;
}
#if defined(HAVE_SVE)
const svbool_t lane_pred_32 = svwhilelt_b8(0, 32);
svuint8_t cur_state = svdup_u8(*state);
svuint8_t tbl_mask = svdup_u8((unsigned char)0x1F);
const m512 *masks = s->succ_masks;
#else
m512 cur_state = set1_64x8(*state);
const m512 *masks = s->succ_masks;
#endif
while (likely(end - cur_buf >= 4)) {
const u8 *b1 = cur_buf;
@ -333,6 +340,23 @@ char SHENG32_IMPL(u8 *state, NfaCallback cb, void *ctxt,
const u8 c3 = *b3;
const u8 c4 = *b4;
#if defined(HAVE_SVE)
svuint8_t succ_mask1 = svld1(lane_pred_32, (const u8*)(masks+c1));
cur_state = svtbl(succ_mask1, svand_x(svptrue_b8(), tbl_mask, cur_state));
const u8 a1 = svlastb(lane_pred_32, cur_state);
svuint8_t succ_mask2 = svld1(lane_pred_32, (const u8*)(masks+c2));
cur_state = svtbl(succ_mask2, svand_x(svptrue_b8(), tbl_mask, cur_state));
const u8 a2 = svlastb(lane_pred_32, cur_state);
svuint8_t succ_mask3 = svld1(lane_pred_32, (const u8*)(masks+c3));
cur_state = svtbl(succ_mask3, svand_x(svptrue_b8(), tbl_mask, cur_state));
const u8 a3 = svlastb(lane_pred_32, cur_state);
svuint8_t succ_mask4 = svld1(lane_pred_32, (const u8*)(masks+c4));
cur_state = svtbl(succ_mask4, svand_x(svptrue_b8(), tbl_mask, cur_state));
const u8 a4 = svlastb(lane_pred_32, cur_state);
#else
const m512 succ_mask1 = masks[c1];
cur_state = vpermb512(cur_state, succ_mask1);
const u8 a1 = movd512(cur_state);
@ -348,6 +372,7 @@ char SHENG32_IMPL(u8 *state, NfaCallback cb, void *ctxt,
const m512 succ_mask4 = masks[c4];
cur_state = vpermb512(cur_state, succ_mask4);
const u8 a4 = movd512(cur_state);
#endif
DEBUG_PRINTF("c: %02hhx '%c'\n", c1, ourisprint(c1) ? c1 : '?');
DEBUG_PRINTF("s: %u (flag: %u)\n", a1 & SHENG32_STATE_MASK,
@ -517,7 +542,11 @@ char SHENG32_IMPL(u8 *state, NfaCallback cb, void *ctxt,
};
cur_buf += 4;
}
#if defined(HAVE_SVE)
*state = svlastb(lane_pred_32, cur_state);
#else
*state = movd512(cur_state);
#endif
*scan_end = cur_buf;
return MO_CONTINUE_MATCHING;
}
@ -541,9 +570,15 @@ char SHENG64_IMPL(u8 *state, NfaCallback cb, void *ctxt,
*scan_end = end;
return MO_CONTINUE_MATCHING;
}
#if defined(HAVE_SVE)
const svbool_t lane_pred_64 = svwhilelt_b8(0, 64);
svuint8_t cur_state = svdup_u8(*state);
svuint8_t tbl_mask = svdup_u8((unsigned char)0x3F);
const m512 *masks = s->succ_masks;
#else
m512 cur_state = set1_64x8(*state);
const m512 *masks = s->succ_masks;
#endif
while (likely(end - cur_buf >= 4)) {
const u8 *b1 = cur_buf;
@ -555,6 +590,23 @@ char SHENG64_IMPL(u8 *state, NfaCallback cb, void *ctxt,
const u8 c3 = *b3;
const u8 c4 = *b4;
#if defined(HAVE_SVE)
svuint8_t succ_mask1 = svld1(lane_pred_64, (const u8*)(masks+c1));
cur_state = svtbl(succ_mask1, svand_x(svptrue_b8(), tbl_mask, cur_state));
const u8 a1 = svlastb(lane_pred_64, cur_state);
svuint8_t succ_mask2 = svld1(lane_pred_64, (const u8*)(masks+c2));
cur_state = svtbl(succ_mask2, svand_x(svptrue_b8(), tbl_mask, cur_state));
const u8 a2 = svlastb(lane_pred_64, cur_state);
svuint8_t succ_mask3 = svld1(lane_pred_64, (const u8*)(masks+c3));
cur_state = svtbl(succ_mask3, svand_x(svptrue_b8(), tbl_mask, cur_state));
const u8 a3 = svlastb(lane_pred_64, cur_state);
svuint8_t succ_mask4 = svld1(lane_pred_64, (const u8*)(masks+c4));
cur_state = svtbl(succ_mask4, svand_x(svptrue_b8(), tbl_mask, cur_state));
const u8 a4 = svlastb(lane_pred_64, cur_state);
#else
const m512 succ_mask1 = masks[c1];
cur_state = vpermb512(cur_state, succ_mask1);
const u8 a1 = movd512(cur_state);
@ -570,6 +622,7 @@ char SHENG64_IMPL(u8 *state, NfaCallback cb, void *ctxt,
const m512 succ_mask4 = masks[c4];
cur_state = vpermb512(cur_state, succ_mask4);
const u8 a4 = movd512(cur_state);
#endif
DEBUG_PRINTF("c: %02hhx '%c'\n", c1, ourisprint(c1) ? c1 : '?');
DEBUG_PRINTF("s: %u (flag: %u)\n", a1 & SHENG64_STATE_MASK,
@ -703,7 +756,11 @@ char SHENG64_IMPL(u8 *state, NfaCallback cb, void *ctxt,
}
cur_buf += 4;
}
#if defined(HAVE_SVE)
*state = svlastb(lane_pred_64, cur_state);
#else
*state = movd512(cur_state);
#endif
*scan_end = cur_buf;
return MO_CONTINUE_MATCHING;
}

View File

@ -730,10 +730,17 @@ bytecode_ptr<NFA> sheng32Compile(raw_dfa &raw, const CompileContext &cc,
return nullptr;
}
#ifdef HAVE_SVE
if (svcntb()<32) {
DEBUG_PRINTF("Sheng32 failed, SVE width is too small!\n");
return nullptr;
}
#else
if (!cc.target_info.has_avx512vbmi()) {
DEBUG_PRINTF("Sheng32 failed, no HS_CPU_FEATURES_AVX512VBMI!\n");
return nullptr;
}
#endif
sheng_build_strat strat(raw, rm, only_accel_init);
dfa_info info(strat);
@ -762,10 +769,17 @@ bytecode_ptr<NFA> sheng64Compile(raw_dfa &raw, const CompileContext &cc,
return nullptr;
}
#ifdef HAVE_SVE
if (svcntb()<64) {
DEBUG_PRINTF("Sheng64 failed, SVE width is too small!\n");
return nullptr;
}
#else
if (!cc.target_info.has_avx512vbmi()) {
DEBUG_PRINTF("Sheng64 failed, no HS_CPU_FEATURES_AVX512VBMI!\n");
return nullptr;
}
#endif
sheng_build_strat strat(raw, rm, only_accel_init);
dfa_info info(strat);

View File

@ -193,9 +193,6 @@ void reduceGraph(NGHolder &g, som_type som, bool utf8,
if (!som) {
mergeCyclicDotStars(g);
}
if (!som) {
removeSiblingsOfStartDotStar(g);
}
}

View File

@ -165,9 +165,9 @@ void reformAnchoredRepeatsComponent(NGHolder &g,
return;
}
NFAVertex dotV = NGHolder::null_vertex();
set<NFAVertex> otherV;
dotV = findReformable(g, compAnchoredStarts, otherV);
NFAVertex dotV = findReformable(g, compAnchoredStarts, otherV);
if (dotV == NGHolder::null_vertex()) {
DEBUG_PRINTF("no candidate reformable dot found.\n");
return;
@ -268,9 +268,9 @@ void reformUnanchoredRepeatsComponent(NGHolder &g,
}
while (true) {
NFAVertex dotV = NGHolder::null_vertex();
set<NFAVertex> otherV;
dotV = findReformable(g, compUnanchoredStarts, otherV);
NFAVertex dotV = findReformable(g, compUnanchoredStarts, otherV);
if (dotV == NGHolder::null_vertex()) {
DEBUG_PRINTF("no candidate reformable dot found.\n");
return;

View File

@ -513,12 +513,12 @@ static
bool doHaig(const NGHolder &g, som_type som,
const vector<vector<CharReach>> &triggers, bool unordered_som,
raw_som_dfa *rdfa) {
u32 state_limit = HAIG_FINAL_DFA_STATE_LIMIT; /* haig never backs down from
a fight */
using StateSet = typename Auto::StateSet;
vector<StateSet> nfa_state_map;
Auto n(g, som, triggers, unordered_som);
try {
u32 state_limit = HAIG_FINAL_DFA_STATE_LIMIT; /* haig never backs down from
a fight */
if (!determinise(n, rdfa->states, state_limit, &nfa_state_map)) {
DEBUG_PRINTF("state limit exceeded\n");
return false;

View File

@ -321,7 +321,7 @@ struct DAccelScheme {
bool cd_a = buildDvermMask(a.double_byte);
bool cd_b = buildDvermMask(b.double_byte);
if (cd_a != cd_b) {
return cd_a > cd_b;
return cd_a;
}
}
@ -811,11 +811,9 @@ depth_done:
return true;
}
}
}
// Second option: a two-byte shufti (i.e. less than eight 2-byte
// literals)
if (depth > 1) {
for (unsigned int i = 0; i < (depth - 1); i++) {
if (depthReach[i].count() * depthReach[i+1].count()
<= DOUBLE_SHUFTI_LIMIT) {

View File

@ -636,12 +636,12 @@ bool reversePathReachSubset(const NFAEdge &e, const NFAVertex &dom,
NFAVertex start = source(e, g);
using RevGraph = boost::reverse_graph<NGHolder, const NGHolder &>;
map<RevGraph::vertex_descriptor, boost::default_color_type> vertexColor;
// Walk the graph backwards from v, examining each node. We fail (return
// false) if we encounter a node with reach NOT a subset of domReach, and
// we stop searching at dom.
try {
map<RevGraph::vertex_descriptor, boost::default_color_type> vertexColor;
depth_first_visit(RevGraph(g), start,
ReachSubsetVisitor(domReach),
make_assoc_property_map(vertexColor),
@ -664,12 +664,12 @@ bool forwardPathReachSubset(const NFAEdge &e, const NFAVertex &dom,
}
NFAVertex start = target(e, g);
map<NFAVertex, boost::default_color_type> vertexColor;
// Walk the graph forward from v, examining each node. We fail (return
// false) if we encounter a node with reach NOT a subset of domReach, and
// we stop searching at dom.
try {
map<NFAVertex, boost::default_color_type> vertexColor;
depth_first_visit(g, start, ReachSubsetVisitor(domReach),
make_assoc_property_map(vertexColor),
VertexIs<NGHolder, NFAVertex>(dom));

View File

@ -1292,8 +1292,8 @@ bool doTreePlanningIntl(const NGHolder &g,
DEBUG_PRINTF("add mapped reporters for region %u\n", it->first);
addMappedReporterVertices(it->second, g, copy_to_orig,
plan.back().reporters);
} while (it->second.optional && it != info.rend() &&
(++it)->first > furthest->first);
} while (it != info.rend() && it->second.optional &&
(++it)->first > furthest->first);
return true;
}
@ -1551,7 +1551,7 @@ bool doSomPlanning(NGHolder &g, bool stuck_in,
DEBUG_PRINTF("region %u contributes reporters to last plan\n",
it->first);
addReporterVertices(it->second, g, plan.back().reporters);
} while (it->second.optional && it != info.rend() &&
} while (it != info.rend() && it->second.optional &&
(++it)->first > furthest->first);
DEBUG_PRINTF("done!\n");

View File

@ -267,18 +267,6 @@ bool somMayGoBackwards(NFAVertex u, const NGHolder &g,
boost::depth_first_search(c_g, visitor(backEdgeVisitor)
.root_vertex(c_g.start));
for (const auto &e : be) {
NFAVertex s = source(e, c_g);
NFAVertex t = target(e, c_g);
DEBUG_PRINTF("back edge %zu %zu\n", c_g[s].index, c_g[t].index);
if (s != t) {
assert(0);
DEBUG_PRINTF("eek big cycle\n");
rv = true; /* big cycle -> eek */
goto exit;
}
}
DEBUG_PRINTF("checking acyclic+selfloop graph\n");
rv = !firstMatchIsFirst(c_g);

View File

@ -589,7 +589,7 @@ void getHighlanderReporters(const NGHolder &g, const NFAVertex accept,
verts.insert(v);
next_vertex:
continue;
;
}
}

View File

@ -314,7 +314,7 @@ void duplicateReport(NGHolder &g, ReportID r_old, ReportID r_new);
/** Construct a reversed copy of an arbitrary NGHolder, mapping starts to
* accepts. */
void reverseHolder(const NGHolder &g, NGHolder &out);
void reverseHolder(const NGHolder &g_in, NGHolder &g);
/** \brief Returns the delay or ~0U if the graph cannot match with
* the trailing literal. */

View File

@ -348,10 +348,9 @@ void getSimpleRoseLiterals(const NGHolder &g, bool seeking_anchored,
map<NFAVertex, u64a> scores;
map<NFAVertex, unique_ptr<VertLitInfo>> lit_info;
set<ue2_literal> s;
for (auto v : a_dom) {
s = getLiteralSet(g, v, true); /* RHS will take responsibility for any
set<ue2_literal> s = getLiteralSet(g, v, true); /* RHS will take responsibility for any
revisits to the target vertex */
if (s.empty()) {
@ -2868,7 +2867,6 @@ static
bool splitForImplementability(RoseInGraph &vg, NGHolder &h,
const vector<RoseInEdge> &edges,
const CompileContext &cc) {
vector<pair<ue2_literal, u32>> succ_lits;
DEBUG_PRINTF("trying to split %s with %zu vertices on %zu edges\n",
to_string(h.kind).c_str(), num_vertices(h), edges.size());
@ -2877,6 +2875,7 @@ bool splitForImplementability(RoseInGraph &vg, NGHolder &h,
}
if (!generates_callbacks(h)) {
vector<pair<ue2_literal, u32>> succ_lits;
for (const auto &e : edges) {
const auto &lit = vg[target(e, vg)].s;
u32 delay = vg[e].graph_lag;
@ -2889,8 +2888,8 @@ bool splitForImplementability(RoseInGraph &vg, NGHolder &h,
}
unique_ptr<VertLitInfo> split;
bool last_chance = true;
if (h.kind == NFA_PREFIX) {
bool last_chance = true;
auto depths = calcDepths(h);
split = findBestPrefixSplit(h, depths, vg, edges, last_chance, cc);

View File

@ -109,20 +109,20 @@ void ComponentAlternation::append(unique_ptr<Component> component) {
vector<PositionInfo> ComponentAlternation::first() const {
// firsts come from all our subcomponents in position order. This will
// maintain left-to-right priority order.
vector<PositionInfo> firsts, subfirsts;
vector<PositionInfo> firsts;
for (const auto &c : children) {
subfirsts = c->first();
vector<PositionInfo> subfirsts = c->first();
firsts.insert(firsts.end(), subfirsts.begin(), subfirsts.end());
}
return firsts;
}
vector<PositionInfo> ComponentAlternation::last() const {
vector<PositionInfo> lasts, sublasts;
vector<PositionInfo> lasts;
for (const auto &c : children) {
sublasts = c->last();
vector<PositionInfo> sublasts = c->last();
lasts.insert(lasts.end(), sublasts.begin(), sublasts.end());
}
return lasts;

View File

@ -320,7 +320,7 @@ void ComponentRepeat::wireRepeats(GlushkovBuildState &bs) {
}
}
DEBUG_PRINTF("wiring up %d optional repeats\n", copies - m_min);
DEBUG_PRINTF("wiring up %u optional repeats\n", copies - m_min);
for (u32 rep = MAX(m_min, 1); rep < copies; rep++) {
vector<PositionInfo> lasts = m_lasts[rep - 1];
if (rep != m_min) {

View File

@ -157,10 +157,10 @@ void ComponentSequence::finalize() {
}
vector<PositionInfo> ComponentSequence::first() const {
vector<PositionInfo> firsts, subfirsts;
vector<PositionInfo> firsts;
for (const auto &c : children) {
subfirsts = c->first();
vector<PositionInfo> subfirsts = c->first();
replaceEpsilons(firsts, subfirsts);
if (!c->empty()) {
break;
@ -229,12 +229,12 @@ void applyEpsilonVisits(vector<PositionInfo> &lasts,
}
vector<PositionInfo> ComponentSequence::last() const {
vector<PositionInfo> lasts, sublasts;
vector<PositionInfo> lasts;
vector<eps_info> visits(1);
auto i = children.rbegin(), e = children.rend();
for (; i != e; ++i) {
sublasts = (*i)->last();
vector<PositionInfo> sublasts = (*i)->last();
applyEpsilonVisits(sublasts, visits);
lasts.insert(lasts.end(), sublasts.begin(), sublasts.end());
if ((*i)->empty()) {

View File

@ -260,14 +260,14 @@ void ParsedLogical::parseLogicalCombination(unsigned id, const char *logical,
u32 ekey, u64a min_offset,
u64a max_offset) {
u32 ckey = getCombKey(id);
vector<LogicalOperator> op_stack;
vector<u32> subid_stack;
u32 lkey_start = INVALID_LKEY; // logical operation's lkey
u32 paren = 0; // parentheses
u32 digit = (u32)-1; // digit start offset, invalid offset is -1
u32 subid = (u32)-1;
u32 i;
try {
vector<LogicalOperator> op_stack;
u32 paren = 0; // parentheses
for (i = 0; logical[i]; i++) {
if (isdigit(logical[i])) {
if (digit == (u32)-1) { // new digit start
@ -284,7 +284,7 @@ void ParsedLogical::parseLogicalCombination(unsigned id, const char *logical,
if (logical[i] == '(') {
paren += 1;
} else if (logical[i] == ')') {
if (paren <= 0) {
if (paren == 0) {
throw LocatedParseError("Not enough left parentheses");
}
paren -= 1;

View File

@ -192,7 +192,7 @@ int roseCountingMiracleOccurs(const struct RoseEngine *t,
u32 count = 0;
s64a m_loc = start;
s64a m_loc;
if (!cm->shufti) {
u8 c = cm->c;

View File

@ -131,7 +131,6 @@ void findMaskLiteral(const vector<CharReach> &mask, bool streaming,
if (better) {
best_begin = begin;
best_end = end;
best_len = len;
}
for (size_t i = best_begin; i < best_end; i++) {
@ -393,8 +392,9 @@ bool validateTransientMask(const vector<CharReach> &mask, bool anchored,
none_of(begin(lits), end(lits), mixed_sensitivity));
// Build the HWLM literal mask.
vector<u8> msk, cmp;
vector<u8> msk;
if (grey.roseHamsterMasks) {
vector<u8> cmp;
buildLiteralMask(mask, msk, cmp, delay);
}

View File

@ -2251,10 +2251,9 @@ vector<u32> buildSuffixEkeyLists(const RoseBuildImpl &build, build_context &bc,
/* for each outfix also build elists */
for (const auto &outfix : build.outfixes) {
u32 qi = outfix.get_queue();
set<u32> ekeys = reportsToEkeys(all_reports(outfix), build.rm);
if (!ekeys.empty()) {
u32 qi = outfix.get_queue();
qi_to_ekeys[qi] = {ekeys.begin(), ekeys.end()};
}
}
@ -2975,7 +2974,8 @@ void buildFragmentPrograms(const RoseBuildImpl &build,
!lit_prog.empty()) {
const auto &cfrag = fragments[pfrag.included_frag_id];
assert(pfrag.s.length() >= cfrag.s.length() &&
!pfrag.s.any_nocase() >= !cfrag.s.any_nocase());
!pfrag.s.any_nocase() == !cfrag.s.any_nocase());
/** !pfrag.s.any_nocase() >= !cfrag.s.any_nocase()); **/
u32 child_offset = cfrag.lit_program_offset;
DEBUG_PRINTF("child %u offset %u\n", cfrag.fragment_id,
child_offset);
@ -2992,8 +2992,8 @@ void buildFragmentPrograms(const RoseBuildImpl &build,
pfrag.lit_ids);
if (pfrag.included_delay_frag_id != INVALID_FRAG_ID &&
!rebuild_prog.empty()) {
const auto &cfrag = fragments[pfrag.included_delay_frag_id];
assert(pfrag.s.length() >= cfrag.s.length() &&
/** assert(pfrag.s.length() >= cfrag.s.length() && **/
assert(pfrag.s.length() == cfrag.s.length() &&
!pfrag.s.any_nocase() >= !cfrag.s.any_nocase());
u32 child_offset = cfrag.delay_program_offset;
DEBUG_PRINTF("child %u offset %u\n", cfrag.fragment_id,

View File

@ -170,7 +170,6 @@ void renovateCastle(RoseBuildImpl &tbi, CastleProto *castle,
return; /* bail - TODO: be less lazy */
}
vector<CharReach> rem_local_cr;
u32 ok_count = 0;
for (auto it = e.s.end() - g[v].left.lag; it != e.s.end(); ++it) {
if (!isSubsetOf(*it, cr)) {

View File

@ -884,7 +884,7 @@ void buildAccel(const RoseBuildImpl &build,
}
bytecode_ptr<HWLM>
buildHWLMMatcher(const RoseBuildImpl &build, LitProto *litProto) {
buildHWLMMatcher(const RoseBuildImpl &build, const LitProto *litProto) {
if (!litProto) {
return nullptr;
}

View File

@ -101,7 +101,7 @@ struct LitProto {
};
bytecode_ptr<HWLM>
buildHWLMMatcher(const RoseBuildImpl &build, LitProto *proto);
buildHWLMMatcher(const RoseBuildImpl &build, const LitProto *proto);
std::unique_ptr<LitProto>
buildFloatingMatcherProto(const RoseBuildImpl &build,

View File

@ -1599,7 +1599,8 @@ void dedupeLeftfixesVariableLag(RoseBuildImpl &build) {
continue;
}
}
engine_groups[DedupeLeftKey(build, std::move(preds), left)].emplace_back(left);
auto preds_copy = std::move(preds);
engine_groups[DedupeLeftKey(build, preds_copy , left)].emplace_back(left);
}
/* We don't bother chunking as we expect deduping to be successful if the

View File

@ -1004,9 +1004,9 @@ bool hasOrphanedTops(const RoseBuildImpl &build) {
for (auto v : vertices_range(g)) {
if (g[v].left) {
set<u32> &tops = leftfixes[g[v].left];
if (!build.isRootSuccessor(v)) {
// Tops for infixes come from the in-edges.
set<u32> &tops = leftfixes[g[v].left];
for (const auto &e : in_edges_range(v, g)) {
tops.insert(g[e].rose_top);
}

View File

@ -104,7 +104,7 @@ void runAnchoredTableStream(const struct RoseEngine *t, const void *atable,
static really_inline
void saveStreamState(const struct NFA *nfa, struct mq *q, s64a loc) {
void saveStreamState(const struct NFA *nfa, const struct mq *q, s64a loc) {
DEBUG_PRINTF("offset=%llu, length=%zu, hlength=%zu, loc=%lld\n",
q->offset, q->length, q->hlength, loc);
nfaQueueCompressState(nfa, q, loc);

View File

@ -215,12 +215,12 @@ struct ALIGN_CL_DIRECTIVE hs_scratch {
/* array of fatbit ptr; TODO: why not an array of fatbits? */
static really_inline
struct fatbit **getAnchoredLiteralLog(struct hs_scratch *scratch) {
struct fatbit **getAnchoredLiteralLog(const struct hs_scratch *scratch) {
return scratch->al_log;
}
static really_inline
struct fatbit **getDelaySlots(struct hs_scratch *scratch) {
struct fatbit **getDelaySlots(const struct hs_scratch *scratch) {
return scratch->delay_slots;
}

View File

@ -69,8 +69,8 @@ void setSomLoc(struct fatbit *som_set_now, u64a *som_store, u32 som_store_count,
}
static really_inline
char ok_and_mark_if_write(u8 *som_store_valid, struct fatbit *som_set_now,
u8 *som_store_writable, u32 som_store_count,
char ok_and_mark_if_write(u8 *som_store_valid, const struct fatbit *som_set_now,
const u8 *som_store_writable, u32 som_store_count,
u32 loc) {
return !mmbit_set(som_store_valid, som_store_count, loc) /* unwritten */
|| fatbit_isset(som_set_now, som_store_count, loc) /* write here, need
@ -79,7 +79,7 @@ char ok_and_mark_if_write(u8 *som_store_valid, struct fatbit *som_set_now,
}
static really_inline
char ok_and_mark_if_unset(u8 *som_store_valid, struct fatbit *som_set_now,
char ok_and_mark_if_unset(u8 *som_store_valid, const struct fatbit *som_set_now,
u32 som_store_count, u32 loc) {
return !mmbit_set(som_store_valid, som_store_count, loc) /* unwritten */
|| fatbit_isset(som_set_now, som_store_count, loc); /* write here, need

View File

@ -68,7 +68,7 @@ namespace ue2 {
#endif
void *aligned_malloc_internal(size_t size, size_t align) {
void *mem;
void *mem= nullptr;;
int rv = posix_memalign(&mem, align, size);
if (rv != 0) {
DEBUG_PRINTF("posix_memalign returned %d when asked for %zu bytes\n",

View File

@ -155,13 +155,13 @@ u32 compress32_impl_c(u32 x, u32 m) {
return 0;
}
u32 mk, mp, mv, t;
u32 mk, mv;
x &= m; // clear irrelevant bits
mk = ~m << 1; // we will count 0's to right
for (u32 i = 0; i < 5; i++) {
mp = mk ^ (mk << 1);
u32 mp = mk ^ (mk << 1);
mp ^= mp << 2;
mp ^= mp << 4;
mp ^= mp << 8;
@ -169,7 +169,7 @@ u32 compress32_impl_c(u32 x, u32 m) {
mv = mp & m; // bits to move
m = (m ^ mv) | (mv >> (1 << i)); // compress m
t = x & mv;
u32 t = x & mv;
x = (x ^ t) | (t >> (1 << i)); // compress x
mk = mk & ~mp;
}
@ -239,14 +239,14 @@ u32 expand32_impl_c(u32 x, u32 m) {
return 0;
}
u32 m0, mk, mp, mv, t;
u32 m0, mk, mv;
u32 array[5];
m0 = m; // save original mask
mk = ~m << 1; // we will count 0's to right
for (int i = 0; i < 5; i++) {
mp = mk ^ (mk << 1); // parallel suffix
u32 mp = mk ^ (mk << 1); // parallel suffix
mp = mp ^ (mp << 2);
mp = mp ^ (mp << 4);
mp = mp ^ (mp << 8);
@ -259,7 +259,7 @@ u32 expand32_impl_c(u32 x, u32 m) {
for (int i = 4; i >= 0; i--) {
mv = array[i];
t = x << (1 << i);
u32 t = x << (1 << i);
x = (x & ~mv) | (t & mv);
}
@ -409,7 +409,7 @@ u64a pdep64_impl_c(u64a x, u64a _m) {
u64a result = 0x0UL;
const u64a mask = 0x8000000000000000UL;
u64a m = _m;
u64a c, t;
u64a p;
/* The pop-count of the mask gives the number of the bits from
@ -421,8 +421,8 @@ u64a pdep64_impl_c(u64a x, u64a _m) {
each mask bit as it is processed. */
while (m != 0)
{
c = __builtin_clzl (m);
t = x << (p - c);
u64a c = __builtin_clzl (m);
u64a t = x << (p - c);
m ^= (mask >> c);
result |= (t & (mask >> c));
p++;

View File

@ -178,9 +178,9 @@ size_t describeClassInt(ostream &os, const CharReach &incr, size_t maxLength,
// Render charclass as a series of ranges
size_t c_start = cr.find_first();
size_t c = c_start, c_last = 0;
size_t c = c_start;
while (c != CharReach::npos) {
c_last = c;
size_t c_last = c;
c = cr.find_next(c);
if (c != c_last + 1 || c_last == 0xff) {
describeRange(os, c_start, c_last, out_type);

View File

@ -102,10 +102,10 @@ public:
using category = boost::read_write_property_map_tag;
small_color_map(size_t n_in, const IndexMap &index_map_in)
: n(n_in), index_map(index_map_in) {
size_t num_bytes = (n + entries_per_byte - 1) / entries_per_byte;
data = std::make_shared<std::vector<unsigned char>>(num_bytes);
fill(small_color::white);
: n(n_in),
index_map(index_map_in),
data(std::make_shared<std::vector<unsigned char>>((n_in + entries_per_byte - 1) / entries_per_byte)) {
fill(small_color::white);
}
void fill(small_color color) {

View File

@ -1145,7 +1145,7 @@ really_inline SuperVector<32> SuperVector<32>::loadu_maskz(void const *ptr, uint
template<>
really_inline SuperVector<32> SuperVector<32>::alignr(SuperVector<32> &other, int8_t offset)
{
#if defined(HAVE__BUILTIN_CONSTANT_P) && !(defined(__GNUC__) && (__GNUC__ == 13))
#if defined(HAVE__BUILTIN_CONSTANT_P) && !(defined(__GNUC__) && ((__GNUC__ == 13) || (__GNUC__ == 14)))
if (__builtin_constant_p(offset)) {
if (offset == 16) {
return *this;
@ -1801,7 +1801,7 @@ really_inline SuperVector<64> SuperVector<64>::pshufb_maskz(SuperVector<64> b, u
template<>
really_inline SuperVector<64> SuperVector<64>::alignr(SuperVector<64> &l, int8_t offset)
{
#if defined(HAVE__BUILTIN_CONSTANT_P)
#if defined(HAVE__BUILTIN_CONSTANT_P) && !(defined(__GNUC__) && (__GNUC__ == 14))
if (__builtin_constant_p(offset)) {
if (offset == 16) {
return *this;

View File

@ -66,32 +66,32 @@ public:
explicit EngineChimera(ch_database_t *db, CompileCHStats cs);
~EngineChimera();
std::unique_ptr<EngineContext> makeContext() const;
std::unique_ptr<EngineContext> makeContext() const override;
void scan(const char *data, unsigned int len, unsigned int id,
ResultEntry &result, EngineContext &ectx) const;
ResultEntry &result, EngineContext &ectx) const override;
void scan_vectored(const char *const *data, const unsigned int *len,
unsigned int count, unsigned int streamId,
ResultEntry &result, EngineContext &ectx) const;
ResultEntry &result, EngineContext &ectx) const override;
std::unique_ptr<EngineStream> streamOpen(EngineContext &ectx,
unsigned id) const;
unsigned id) const override;
void streamClose(std::unique_ptr<EngineStream> stream,
ResultEntry &result) const;
ResultEntry &result) const override;
void streamCompressExpand(EngineStream &stream,
std::vector<char> &temp) const;
std::vector<char> &temp) const override;
void streamScan(EngineStream &stream, const char *data, unsigned int len,
unsigned int id, ResultEntry &result) const;
unsigned int id, ResultEntry &result) const override;
void printStats() const;
void printStats() const override;
void printCsvStats() const;
void printCsvStats() const override;
void sqlStats(SqlDB &db) const;
void sqlStats(SqlDB &db) const override;
private:
ch_database_t *db;

View File

@ -248,7 +248,7 @@ void EngineHyperscan::printStats() const {
printf("Signature set: %s\n", compile_stats.sigs_name.c_str());
}
printf("Signatures: %s\n", compile_stats.signatures.c_str());
printf("Hyperscan info: %s\n", compile_stats.db_info.c_str());
printf("Vectorscan info: %s\n", compile_stats.db_info.c_str());
printf("Expression count: %'zu\n", compile_stats.expressionCount);
printf("Bytecode size: %'zu bytes\n", compile_stats.compiledSize);
printf("Database CRC: 0x%x\n", compile_stats.crc32);
@ -456,7 +456,7 @@ buildEngineHyperscan(const ExpressionMap &expressions, ScanMode scan_mode,
if (err == HS_COMPILER_ERROR) {
if (compile_err->expression >= 0) {
printf("Compile error for signature #%u: %s\n",
printf("Compile error for signature #%d: %s\n",
compile_err->expression, compile_err->message);
} else {
printf("Compile error: %s\n", compile_err->message);

View File

@ -75,32 +75,32 @@ public:
explicit EngineHyperscan(hs_database_t *db, CompileHSStats cs);
~EngineHyperscan();
std::unique_ptr<EngineContext> makeContext() const;
std::unique_ptr<EngineContext> makeContext() const override;
void scan(const char *data, unsigned int len, unsigned int id,
ResultEntry &result, EngineContext &ectx) const;
ResultEntry &result, EngineContext &ectx) const override;
void scan_vectored(const char *const *data, const unsigned int *len,
unsigned int count, unsigned int streamId,
ResultEntry &result, EngineContext &ectx) const;
ResultEntry &result, EngineContext &ectx) const override;
std::unique_ptr<EngineStream> streamOpen(EngineContext &ectx,
unsigned id) const;
unsigned id) const override;
void streamClose(std::unique_ptr<EngineStream> stream,
ResultEntry &result) const;
ResultEntry &result) const override;
void streamCompressExpand(EngineStream &stream,
std::vector<char> &temp) const;
std::vector<char> &temp) const override;
void streamScan(EngineStream &stream, const char *data, unsigned int len,
unsigned int id, ResultEntry &result) const;
unsigned int id, ResultEntry &result) const override;
void printStats() const;
void printStats() const override;
void printCsvStats() const;
void printCsvStats() const override;
void sqlStats(SqlDB &db) const;
void sqlStats(SqlDB &db) const override;
private:
hs_database_t *db;

View File

@ -74,32 +74,32 @@ public:
CompilePCREStats cs, int capture_cnt_in);
~EnginePCRE();
std::unique_ptr<EngineContext> makeContext() const;
std::unique_ptr<EngineContext> makeContext() const override;
void scan(const char *data, unsigned int len, unsigned int id,
ResultEntry &result, EngineContext &ectx) const;
ResultEntry &result, EngineContext &ectx) const override;
void scan_vectored(const char *const *data, const unsigned int *len,
unsigned int count, unsigned int streamId,
ResultEntry &result, EngineContext &ectx) const;
ResultEntry &result, EngineContext &ectx) const override;
std::unique_ptr<EngineStream> streamOpen(EngineContext &ectx,
unsigned id) const;
unsigned id) const override;
void streamClose(std::unique_ptr<EngineStream> stream,
ResultEntry &result) const;
ResultEntry &result) const override;
void streamCompressExpand(EngineStream &stream,
std::vector<char> &temp) const;
std::vector<char> &temp) const override;
void streamScan(EngineStream &stream, const char *data, unsigned int len,
unsigned int id, ResultEntry &result) const;
unsigned int id, ResultEntry &result) const override;
void printStats() const;
void printStats() const override;
void printCsvStats() const;
void printCsvStats() const override;
void sqlStats(SqlDB &db) const;
void sqlStats(SqlDB &db) const override;
private:
std::vector<std::unique_ptr<PcreDB>> dbs;

View File

@ -465,7 +465,7 @@ void processArgs(int argc, char *argv[], vector<BenchmarkSigs> &sigSets,
/** Start the global timer. */
static
void startTotalTimer(ThreadContext *ctx) {
void startTotalTimer(const ThreadContext *ctx) {
if (ctx->num != 0) {
return; // only runs in the first thread
}
@ -474,7 +474,7 @@ void startTotalTimer(ThreadContext *ctx) {
/** Stop the global timer and calculate totals. */
static
void stopTotalTimer(ThreadContext *ctx) {
void stopTotalTimer(const ThreadContext *ctx) {
if (ctx->num != 0) {
return; // only runs in the first thread
}

View File

@ -97,12 +97,12 @@ unsigned int countFailures = 0;
class ParsedExpr {
public:
ParsedExpr(string regex_in, unsigned int flags_in, hs_expr_ext ext_in)
ParsedExpr(string regex_in, unsigned int flags_in, const hs_expr_ext& ext_in)
: regex(regex_in), flags(flags_in), ext(ext_in) {}
~ParsedExpr() {}
string regex;
unsigned int flags;
hs_expr_ext ext;
const hs_expr_ext& ext;
};
typedef map<unsigned int, ParsedExpr> ExprExtMap;

View File

@ -102,6 +102,7 @@ set(unit_internal_SOURCES
internal/rvermicelli.cpp
internal/simd_utils.cpp
internal/supervector.cpp
internal/sheng.cpp
internal/shuffle.cpp
internal/shufti.cpp
internal/state_compress.cpp

View File

@ -58,7 +58,7 @@ std::ostream &operator<<(std::ostream &o, const pattern &p) {
}
hs_database_t *buildDB(const vector<pattern> &patterns, unsigned int mode,
hs_platform_info *plat) {
const hs_platform_info *plat) {
vector<const char *> expressions;
vector<unsigned int> flags;
vector<unsigned int> ids;
@ -92,7 +92,7 @@ hs_database_t *buildDB(const pattern &expr, unsigned int mode) {
hs_database_t *buildDB(const char *expression, unsigned int flags,
unsigned int id, unsigned int mode,
hs_platform_info_t *plat) {
const hs_platform_info_t *plat) {
return buildDB({pattern(expression, flags, id)}, mode, plat);
}

View File

@ -99,11 +99,11 @@ struct pattern {
std::ostream &operator<<(std::ostream &o, const pattern &p);
hs_database_t *buildDB(const std::vector<pattern> &patterns, unsigned int mode,
hs_platform_info *plat = nullptr);
const hs_platform_info *plat = nullptr);
hs_database_t *buildDB(const pattern &pat, unsigned int mode);
hs_database_t *buildDB(const char *expression, unsigned int flags,
unsigned int id, unsigned int mode,
hs_platform_info *plat = nullptr);
const hs_platform_info *plat = nullptr);
hs_database_t *buildDB(const char *filename, unsigned int mode,
unsigned int extra_flags = 0);
hs_database_t *buildDB(const char *filename, unsigned int mode,

View File

@ -62,7 +62,7 @@ u32 our_clzll(u64a x) {
TEST(BitUtils, findAndClearLSB32_1) {
// test that it can find every single-bit case
for (unsigned int i = 0; i < 32; i++) {
u32 input = 1 << i;
u32 input = 1U << i;
u32 idx = findAndClearLSB_32(&input);
EXPECT_EQ(i, idx);
EXPECT_EQ(0U, input);
@ -112,7 +112,7 @@ TEST(BitUtils, findAndClearLSB64_2) {
TEST(BitUtils, findAndClearMSB32_1) {
// test that it can find every single-bit case
for (unsigned int i = 0; i < 32; i++) {
u32 input = 1 << i;
u32 input = 1U << i;
u32 idx = findAndClearMSB_32(&input);
EXPECT_EQ(i, idx);
EXPECT_EQ(0U, input);

View File

@ -488,7 +488,6 @@ TEST_P(FDRFloodp, StreamingMask) {
Grey());
CHECK_WITH_TEDDY_OK_TO_FAIL(fdr, hint);
hwlm_error_t fdrStatus;
const u32 cnt4 = dataSize - 4 + 1;
for (u32 streamChunk = 1; streamChunk <= 16; streamChunk *= 2) {
@ -496,7 +495,7 @@ TEST_P(FDRFloodp, StreamingMask) {
const u8 *d = data.data();
// reference past the end of fake history to allow headroom
const u8 *fhist = fake_history.data() + fake_history_size;
fdrStatus = fdrExecStreaming(fdr.get(), fhist, 0, d, streamChunk, 0,
hwlm_error_t fdrStatus = fdrExecStreaming(fdr.get(), fhist, 0, d, streamChunk, 0,
countCallback, &scratch,
HWLM_ALL_GROUPS);
ASSERT_EQ(0, fdrStatus);

View File

@ -46,7 +46,7 @@ UNUSED
static
void mmbit_display(const u8 *bits, u32 total_bits) {
for (u32 i = 0; i < mmbit_size(total_bits); i += 8) {
printf("block %d:", i / 8);
printf("block %u:", i / 8);
for (s32 j = 7; j >= 0; j--) {
u8 a = (*(bits + i + j));
printf(" %02x", a);
@ -72,7 +72,7 @@ UNUSED
static
void mmbit_display_comp(const u8 *bits, u32 comp_size) {
for (u32 i = 0; i < comp_size; i += 8) {
printf("block %d:", i / 8);
printf("block %u:", i / 8);
for (s32 j = 7; j >= 0; j--) {
u8 a = (*(bits + i + j));
printf(" %02x", a);
@ -401,7 +401,7 @@ TEST_P(MultiBitCompTest, CompCompressDecompressDense) {
TEST(MultiBitComp, CompIntegration1) {
// 256 + 1 --> smallest 2-level mmbit
u32 total_size = mmbit_size(257);
//u32 total_size = mmbit_size(257);
mmbit_holder ba(257);
//-------------------- 1 -----------------------//
@ -516,7 +516,7 @@ TEST(MultiBitComp, CompIntegration1) {
TEST(MultiBitComp, CompIntegration2) {
// 64^2 + 1 --> smallest 3-level mmbit
u32 total_size = mmbit_size(4097);
//u32 total_size = mmbit_size(4097);
mmbit_holder ba(4097);
//-------------------- 1 -----------------------//
@ -645,7 +645,7 @@ TEST(MultiBitComp, CompIntegration2) {
TEST(MultiBitComp, CompIntegration3) {
// 64^3 + 1 --> smallest 4-level mmbit
u32 total_size = mmbit_size(262145);
//u32 total_size = mmbit_size(262145);
mmbit_holder ba(262145);
//-------------------- 1 -----------------------//

View File

@ -245,7 +245,7 @@ TEST(pqueue, queue1) {
u32 in[] = {1, 2, 3, 4, 5, 6, 7, 8};
u32 expected[] = {4, 5, 6, 7, 8, 3, 2, 1};
u32 temp[ARRAY_LENGTH(in)];
u32 output[ARRAY_LENGTH(in)];
u32 output[ARRAY_LENGTH(in)] = {0};
u32 queue_size = 0;
u32 i = 0, o = 0;
@ -275,7 +275,7 @@ TEST(pqueue, queue2) {
u32 in[] = {8, 7, 6, 5, 4, 3, 2, 1};
u32 expected[] = {8, 7, 6, 5, 4, 3, 2, 1};
u32 temp[ARRAY_LENGTH(in)];
u32 output[ARRAY_LENGTH(in)];
u32 output[ARRAY_LENGTH(in)] = {0};
u32 queue_size = 0;
u32 i = 0, o = 0;
@ -301,7 +301,7 @@ TEST(pqueue, queue3) {
u32 in[] = {1, 8, 2, 7, 3, 6, 4, 5};
u32 expected[] = {8, 7, 6, 4, 5, 3, 2, 1};
u32 temp[ARRAY_LENGTH(in)];
u32 output[ARRAY_LENGTH(in)];
u32 output[ARRAY_LENGTH(in)] = {0};
u32 queue_size = 0;
u32 i = 0, o = 0;

View File

@ -277,10 +277,9 @@ TEST_P(RepeatTest, FillRing) {
}
// We should be able to see matches for all of these (beyond the last top offset).
enum TriggerResult rv;
for (u64a i = offset + info.repeatMax;
i <= offset + info.repeatMax + info.repeatMin; i++) {
rv = processTugTrigger(&info, ctrl, state, i);
enum TriggerResult rv = processTugTrigger(&info, ctrl, state, i);
if (rv == TRIGGER_SUCCESS_CACHE) {
rv = TRIGGER_SUCCESS;
}
@ -998,16 +997,14 @@ TEST_P(SparseOptimalTest, FillTops) {
repeatStore(info, ctrl, state, offset, 0);
ASSERT_EQ(offset, repeatLastTop(info, ctrl, state));
u64a offset2;
for (u32 i = min_period; i < patch_count * patch_size; i += min_period) {
offset2 = offset + i;
u64a offset2 = offset + i;
repeatStore(info, ctrl, state, offset2, 1);
ASSERT_EQ(offset2, repeatLastTop(info, ctrl, state));
}
u64a exit2;
for (u32 i = 0; i < patch_count * patch_size; i += min_period) {
exit2 = exit + i;
u64a exit2 = exit + i;
for (u32 j = exit2 + info->repeatMin;
j <= offset + info->repeatMax; j++) {
ASSERT_EQ(REPEAT_MATCH, repeatHasMatch(info, ctrl, state, j));

View File

@ -87,12 +87,11 @@ static int initLegalValidMasks(u64a validMasks[]) {
*/
static int initLegalNegMasks(u64a negMasks[]) {
u64a data = 0;
u64a offset;
int num = 0;
while (data != ONES64) {
negMasks[num] = data;
num++;
offset = (data | (data +1)) ^ data;
u64a offset = (data | (data +1)) ^ data;
data += 0xfeULL * offset + 1;
}
negMasks[num] = data;

View File

@ -194,10 +194,9 @@ TEST(ValidateMask32, testMask32_3) {
u32 valid_mask = ONES32 << (left + right) >> left;
for (int i = 0; i < test_len; i++) {
const auto &t = testBasic[i];
int bool_result;
for (int j = 0; j < 5000; j++) {
u32 neg_mask = neg_mask_rand.Generate(1u << 31);
bool_result = (neg_mask & valid_mask) ==
int bool_result = (neg_mask & valid_mask) ==
(t.neg_mask & valid_mask);
EXPECT_EQ(bool_result, validateMask32(t.data.a256,
valid_mask,

709
unit/internal/sheng.cpp Normal file
View File

@ -0,0 +1,709 @@
/*
* Copyright (c) 2024, Arm ltd
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "gtest/gtest.h"
#include "nfa/shengcompile.h"
#include "nfa/rdfa.h"
#include "util/bytecode_ptr.h"
#include "util/compile_context.h"
#include "util/report_manager.h"
extern "C" {
#include "hs_compile.h"
#include "nfa/nfa_api.h"
#include "nfa/nfa_api_queue.h"
#include "nfa/nfa_api_util.h"
#include "nfa/nfa_internal.h"
#include "nfa/rdfa.h"
#include "nfa/sheng.h"
#include "ue2common.h"
}
namespace {
struct callback_context {
unsigned int period;
unsigned int match_count;
unsigned int pattern_length;
};
int dummy_callback(u64a start, u64a end, ReportID id, void *context) {
(void) context;
printf("callback %llu %llu %u\n", start, end, id);
return 1; /* 0 stops matching, !0 continue */
}
int periodic_pattern_callback(u64a start, u64a end, ReportID id, void *raw_context) {
struct callback_context *context = (struct callback_context*) raw_context;
(void) start;
(void) id;
EXPECT_EQ(context->period * context->match_count, end - context->pattern_length);
context->match_count++;
return 1; /* 0 stops matching, !0 continue */
}
/**
* @brief Fill the state matrix with a diagonal pattern: accept the Nth character to go to the N+1 state
*/
static void fill_straight_regex_sequence(struct ue2::raw_dfa *dfa, int start_state, int end_state, int state_count)
{
for (int state = start_state; state < end_state; state++) {
dfa->states[state].next.assign(state_count ,1);
dfa->states[state].next[0] = 2;
dfa->states[state].next[1] = 2;
dfa->states[state].next[state] = state+1;
}
}
static void init_raw_dfa16(struct ue2::raw_dfa *dfa, const ReportID rID)
{
dfa->start_anchored = 1;
dfa->start_floating = 1;
dfa->alpha_size = 8;
int nb_state = 8;
for(int i = 0; i < nb_state; i++) {
struct ue2::dstate state(dfa->alpha_size);
state.next = std::vector<ue2::dstate_id_t>(nb_state);
state.daddy = 0;
state.impl_id = i; /* id of the state */
state.reports = ue2::flat_set<ReportID>();
state.reports_eod = ue2::flat_set<ReportID>();
dfa->states.push_back(state);
}
/* add a report to every accept state */
dfa->states[7].reports.insert(rID);
/**
* [a,b][c-e]{3}of
* (1) -a,b-> (2) -c,d,e-> (3) -c,d,e-> (4) -c,d,e-> (5) -o-> (6) -f-> ((7))
* (0) = dead
*/
for(int i = 0; i < ue2::ALPHABET_SIZE; i++) {
dfa->alpha_remap[i] = 0;
}
dfa->alpha_remap['a'] = 0;
dfa->alpha_remap['b'] = 1;
dfa->alpha_remap['c'] = 2;
dfa->alpha_remap['d'] = 3;
dfa->alpha_remap['e'] = 4;
dfa->alpha_remap['o'] = 5;
dfa->alpha_remap['f'] = 6;
dfa->alpha_remap[256] = 7; /* for some reason there's a check that run on dfa->alpha_size-1 */
/* a b c d e o f */
dfa->states[0].next = {0,0,0,0,0,0,0};
dfa->states[1].next = {2,2,1,1,1,1,1}; /* nothing */
dfa->states[2].next = {2,2,3,3,3,1,1}; /* [a,b] */
dfa->states[3].next = {2,2,4,4,4,1,1}; /* [a,b][c-e]{1} */
dfa->states[4].next = {2,2,5,5,5,1,1}; /* [a,b][c-e]{2} */
fill_straight_regex_sequence(dfa, 5, 7, 7); /* [a,b][c-e]{3}o */
dfa->states[7].next = {2,2,1,1,1,1,1}; /* [a,b][c-e]{3}of */
}
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
/* We need more than 16 states to run sheng32, so make the graph longer */
static void init_raw_dfa32(struct ue2::raw_dfa *dfa, const ReportID rID)
{
dfa->start_anchored = 1;
dfa->start_floating = 1;
dfa->alpha_size = 18;
int nb_state = 18;
for(int i = 0; i < nb_state; i++) {
struct ue2::dstate state(dfa->alpha_size);
state.next = std::vector<ue2::dstate_id_t>(nb_state);
state.daddy = 0;
state.impl_id = i; /* id of the state */
state.reports = ue2::flat_set<ReportID>();
state.reports_eod = ue2::flat_set<ReportID>();
dfa->states.push_back(state);
}
/* add a report to every accept state */
dfa->states[17].reports.insert(rID);
/**
* [a,b][c-e]{3}of0123456789
* (1) -a,b-> (2) -c,d,e-> (3) -c,d,e-> (4) -c,d,e-> (5) -o-> (6) -f-> (7) -<numbers>-> ((17))
* (0) = dead
*/
for(int i = 0; i < ue2::ALPHABET_SIZE; i++) {
dfa->alpha_remap[i] = 0;
}
dfa->alpha_remap['a'] = 0;
dfa->alpha_remap['b'] = 1;
dfa->alpha_remap['c'] = 2;
dfa->alpha_remap['d'] = 3;
dfa->alpha_remap['e'] = 4;
dfa->alpha_remap['o'] = 5;
dfa->alpha_remap['f'] = 6;
// maps 0 to 9
for (int i = 0; i < 10; i ++) {
dfa->alpha_remap[i + '0'] = i + 7;
}
dfa->alpha_remap[256] = 17; /* for some reason there's a check that run on dfa->alpha_size-1 */
/* a b c d e o f 0 1 2 3 4 5 6 7 8 9 */
dfa->states[0].next = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
dfa->states[1].next = {2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; /* nothing */
dfa->states[2].next = {2,2,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1}; /* [a,b] */
dfa->states[3].next = {2,2,4,4,4,1,1,1,1,1,1,1,1,1,1,1,1}; /* [a,b][c-e]{1} */
dfa->states[4].next = {2,2,5,5,5,1,1,1,1,1,1,1,1,1,1,1,1}; /* [a,b][c-e]{2} */
fill_straight_regex_sequence(dfa, 5, 17, 17); /* [a,b][c-e]{3}of012345678 */
dfa->states[17].next = {2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; /* [a,b][c-e]{3}of0123456789 */
}
#endif /* defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) */
typedef ue2::bytecode_ptr<NFA> (*sheng_compile_ptr)(ue2::raw_dfa&,
const ue2::CompileContext&,
const ue2::ReportManager&,
bool,
std::set<ue2::dstate_id_t>*);
typedef void (*init_raw_dfa_ptr)(struct ue2::raw_dfa*, const ReportID);
static inline void init_nfa(struct NFA **out_nfa, sheng_compile_ptr compile_function, init_raw_dfa_ptr init_dfa_function) {
ue2::Grey *g = new ue2::Grey();
hs_platform_info plat_info = {0, 0, 0, 0};
ue2::CompileContext *cc = new ue2::CompileContext(false, false, ue2::target_t(plat_info), *g);
ue2::ReportManager *rm = new ue2::ReportManager(*g);
ue2::Report *report = new ue2::Report(ue2::EXTERNAL_CALLBACK, 0);
ReportID rID = rm->getInternalId(*report);
rm->setProgramOffset(0, 0);
struct ue2::raw_dfa *dfa = new ue2::raw_dfa(ue2::NFA_OUTFIX);
init_dfa_function(dfa, rID);
*out_nfa = (compile_function(*dfa, *cc, *rm, false, nullptr)).release();
ASSERT_NE(nullptr, *out_nfa);
delete report;
delete rm;
delete cc;
delete g;
}
static void init_nfa16(struct NFA **out_nfa) {
init_nfa(out_nfa, ue2::shengCompile, init_raw_dfa16);
}
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
static void init_nfa32(struct NFA **out_nfa) {
init_nfa(out_nfa, ue2::sheng32Compile, init_raw_dfa32);
}
#endif /* defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) */
static char state_buffer;
static inline void init_sheng_queue(struct mq **out_q, uint8_t *buffer, size_t max_size, void (*init_nfa_func)(struct NFA **out_nfa) ) {
struct NFA* nfa;
init_nfa_func(&nfa);
assert(nfa);
struct mq *q = new mq();
memset(q, 0, sizeof(struct mq));
q->nfa = nfa;
q->state = &state_buffer;
q->cb = dummy_callback;
q->buffer = buffer;
q->length = max_size; /* setting this as the max length scanable */
if (nfa != q->nfa) {
printf("Something went wrong while initializing sheng.\n");
}
nfaQueueInitState(nfa, q);
pushQueueAt(q, 0, MQE_START, 0);
pushQueueAt(q, 1, MQE_END, q->length );
*out_q = q;
}
static void init_sheng_queue16(struct mq **out_q, uint8_t *buffer ,size_t max_size) {
init_sheng_queue(out_q, buffer, max_size, init_nfa16);
}
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
static void init_sheng_queue32(struct mq **out_q, uint8_t *buffer, size_t max_size) {
init_sheng_queue(out_q, buffer, max_size, init_nfa32);
}
#endif /* defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) */
static
void fill_pattern(u8* buf, size_t buffer_size, unsigned int start_offset, unsigned int period, const char *pattern, unsigned int pattern_length) {
memset(buf, '_', buffer_size);
for (unsigned int i = 0; i < buffer_size - 8; i+= 8) {
/* filling with some junk, including some character used for a valid state, to prevent the use of shufti */
memcpy(buf + i, "jgohcxbf", 8);
}
for (unsigned int i = start_offset; i < buffer_size - pattern_length; i += period) {
memcpy(buf + i, pattern, pattern_length);
}
}
/* Generate ground truth to compare to */
struct NFA *get_expected_nfa_header(u8 type, unsigned int length, unsigned int nposition) {
struct NFA *expected_nfa_header = new struct NFA();
memset(expected_nfa_header, 0, sizeof(struct NFA));
expected_nfa_header->length = length;
expected_nfa_header->type = type;
expected_nfa_header->nPositions = nposition;
expected_nfa_header->scratchStateSize = 1;
expected_nfa_header->streamStateSize = 1;
return expected_nfa_header;
}
struct NFA *get_expected_nfa16_header() {
return get_expected_nfa_header(SHENG_NFA, 4736, 8);
}
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
struct NFA *get_expected_nfa32_header() {
return get_expected_nfa_header(SHENG_NFA_32, 17216, 18);
}
#endif /* defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) */
void test_nfa_equal(const NFA& l, const NFA& r)
{
EXPECT_EQ(l.flags, r.flags);
EXPECT_EQ(l.length, r.length);
EXPECT_EQ(l.type, r.type);
EXPECT_EQ(l.rAccelType, r.rAccelType);
EXPECT_EQ(l.rAccelOffset, r.rAccelOffset);
EXPECT_EQ(l.maxBiAnchoredWidth, r.maxBiAnchoredWidth);
EXPECT_EQ(l.rAccelData.dc, r.rAccelData.dc);
EXPECT_EQ(l.queueIndex, r.queueIndex);
EXPECT_EQ(l.nPositions, r.nPositions);
EXPECT_EQ(l.scratchStateSize, r.scratchStateSize);
EXPECT_EQ(l.streamStateSize, r.streamStateSize);
EXPECT_EQ(l.maxWidth, r.maxWidth);
EXPECT_EQ(l.minWidth, r.minWidth);
EXPECT_EQ(l.maxOffset, r.maxOffset);
}
/* Start of actual tests */
/*
* Runs shengCompile and compares its outputs to previously recorded outputs.
*/
TEST(Sheng16, std_compile_header) {
ue2::Grey *g = new ue2::Grey();
hs_platform_info plat_info = {0, 0, 0, 0};
ue2::CompileContext *cc = new ue2::CompileContext(false, false, ue2::target_t(plat_info), *g);
ue2::ReportManager *rm = new ue2::ReportManager(*g);
ue2::Report *report = new ue2::Report(ue2::EXTERNAL_CALLBACK, 0);
ReportID rID = rm->getInternalId(*report);
rm->setProgramOffset(0, 0);
struct ue2::raw_dfa *dfa = new ue2::raw_dfa(ue2::NFA_OUTFIX);
init_raw_dfa16(dfa, rID);
struct NFA *nfa = (shengCompile(*dfa, *cc, *rm, false)).release();
EXPECT_NE(nullptr, nfa);
EXPECT_NE(0, nfa->length);
EXPECT_EQ(SHENG_NFA, nfa->type);
struct NFA *expected_nfa = get_expected_nfa16_header();
test_nfa_equal(*expected_nfa, *nfa);
delete expected_nfa;
delete report;
delete rm;
delete cc;
delete g;
}
/*
* nfaExecSheng_B is the most basic of the sheng variants. It simply calls the core of the algorithm.
* We test it with a buffer having a few matches at fixed intervals and check that it finds them all.
*/
TEST(Sheng16, std_run_B) {
struct mq *q;
unsigned int pattern_length = 6;
unsigned int period = 128;
const size_t buf_size = 200;
unsigned int expected_matches = buf_size/128 + 1;
u8 buf[buf_size];
struct callback_context context = {period, 0, pattern_length};
struct NFA* nfa;
init_nfa16(&nfa);
ASSERT_NE(nullptr, nfa);
fill_pattern(buf, buf_size, 0, period, "acecof", pattern_length);
char ret_val;
unsigned int offset = 0;
unsigned int loop_count = 0;
for (; loop_count < expected_matches + 1; loop_count++) {
ASSERT_LT(offset, buf_size);
ret_val = nfaExecSheng_B(nfa,
offset,
buf + offset,
(s64a) buf_size - offset,
periodic_pattern_callback,
&context);
offset = (context.match_count - 1) * context.period + context.pattern_length;
if(unlikely(ret_val != MO_ALIVE)) {
break;
}
}
/*check normal return*/
EXPECT_EQ(MO_ALIVE, ret_val);
/*check that we don't find additional match nor crash when no match are found*/
EXPECT_EQ(expected_matches + 1, loop_count);
/*check that we have all the matches*/
EXPECT_EQ(expected_matches, context.match_count);
}
/*
* nfaExecSheng_Q runs like the _B version (callback), but exercises the message queue logic.
* We test it with a buffer having a few matches at fixed intervals and check that it finds them all.
*/
TEST(Sheng16, std_run_Q) {
struct mq *q;
unsigned int pattern_length = 6;
unsigned int period = 128;
const size_t buf_size = 200;
unsigned int expected_matches = buf_size/128 + 1;
u8 buf[buf_size];
struct callback_context context = {period, 0, pattern_length};
init_sheng_queue16(&q, buf, buf_size);
fill_pattern(buf, buf_size, 0, period, "acecof", pattern_length);
q->cur = 0;
q->items[q->cur].location = 0;
q->context = &context;
q->cb = periodic_pattern_callback;
nfaExecSheng_Q(q->nfa, q, (s64a) buf_size);
/*check that we have all the matches*/
EXPECT_EQ(expected_matches, context.match_count);
delete q;
}
/*
* nfaExecSheng_Q2 uses the message queue, but stops at match instead of using a callback.
* We test it with a buffer having a few matches at fixed intervals and check that it finds them all.
*/
TEST(Sheng16, std_run_Q2) {
struct mq *q;
unsigned int pattern_length = 6;
unsigned int period = 128;
const size_t buf_size = 200;
unsigned int expected_matches = buf_size/128 + 1;
u8 buf[buf_size];
init_sheng_queue16(&q, buf, buf_size);
fill_pattern(buf, buf_size, 0, period, "acecof", pattern_length);
q->cur = 0;
q->items[q->cur].location = 0;
char ret_val;
int location;
unsigned int loop_count = 0;
do {
ret_val = nfaExecSheng_Q2(q->nfa, q, (s64a) buf_size);
location = q->items[q->cur].location;
loop_count++;
} while(likely((ret_val == MO_MATCHES_PENDING) && (location < (int)buf_size) && ((location % period) == pattern_length)));
/*check if it's a spurious match*/
EXPECT_EQ(0, (ret_val == MO_MATCHES_PENDING) && ((location % period) != pattern_length));
/*check that we have all the matches*/
EXPECT_EQ(expected_matches, loop_count-1);
delete q;
}
/*
* The message queue can also run on the "history" buffer. We test it the same way as the normal
* buffer, expecting the same behavior.
* We test it with a buffer having a few matches at fixed intervals and check that it finds them all.
*/
TEST(Sheng16, history_run_Q2) {
struct mq *q;
unsigned int pattern_length = 6;
unsigned int period = 128;
const size_t buf_size = 200;
unsigned int expected_matches = buf_size/128 + 1;
u8 buf[buf_size];
init_sheng_queue16(&q, buf, buf_size);
fill_pattern(buf, buf_size, 0, period, "acecof", pattern_length);
q->history = buf;
q->hlength = buf_size;
q->cur = 0;
q->items[q->cur].location = -200;
char ret_val;
int location;
unsigned int loop_count = 0;
do {
ret_val = nfaExecSheng_Q2(q->nfa, q, 0);
location = q->items[q->cur].location;
loop_count++;
} while(likely((ret_val == MO_MATCHES_PENDING) && (location > -(int)buf_size) && (location < 0) && (((buf_size + location) % period) == pattern_length)));
/*check if it's a spurious match*/
EXPECT_EQ(0, (ret_val == MO_MATCHES_PENDING) && (((buf_size + location) % period) != pattern_length));
/*check that we have all the matches*/
EXPECT_EQ(expected_matches, loop_count-1);
delete q;
}
/**
* Those tests only covers the basic paths. More tests can cover:
* - running for history buffer to current buffer in Q2
* - running while expecting no match
* - nfaExecSheng_QR
* - run sheng when it should call an accelerator and confirm it call them
*/
#if defined(HAVE_AVX512VBMI) || defined(HAVE_SVE)
/*
* Runs sheng32Compile and compares its outputs to previously recorded outputs.
*/
TEST(Sheng32, std_compile_header) {
#if defined(HAVE_SVE)
if(svcntb()<32) {
return;
}
#endif
ue2::Grey *g = new ue2::Grey();
hs_platform_info plat_info = {0, 0, 0, 0};
ue2::CompileContext *cc = new ue2::CompileContext(false, false, ue2::target_t(plat_info), *g);
ue2::ReportManager *rm = new ue2::ReportManager(*g);
ue2::Report *report = new ue2::Report(ue2::EXTERNAL_CALLBACK, 0);
ReportID rID = rm->getInternalId(*report);
rm->setProgramOffset(0, 0);
struct ue2::raw_dfa *dfa = new ue2::raw_dfa(ue2::NFA_OUTFIX);
init_raw_dfa32(dfa, rID);
struct NFA *nfa = (sheng32Compile(*dfa, *cc, *rm, false)).release();
EXPECT_NE(nullptr, nfa);
EXPECT_NE(0, nfa->length);
EXPECT_EQ(SHENG_NFA_32, nfa->type);
struct NFA *expected_nfa = get_expected_nfa32_header();
test_nfa_equal(*expected_nfa, *nfa);
delete expected_nfa;
delete report;
delete rm;
delete cc;
delete g;
}
/*
* nfaExecSheng32_B is the most basic of the sheng variants. It simply calls the core of the algorithm.
* We test it with a buffer having a few matches at fixed intervals and check that it finds them all.
*/
TEST(Sheng32, std_run_B) {
#if defined(HAVE_SVE)
if(svcntb()<32) {
return;
}
#endif
struct mq *q;
unsigned int pattern_length = 16;
unsigned int period = 128;
const size_t buf_size = 200;
unsigned int expected_matches = buf_size/128 + 1;
u8 buf[buf_size];
struct callback_context context = {period, 0, pattern_length};
struct NFA* nfa;
init_nfa32(&nfa);
ASSERT_NE(nullptr, nfa);
fill_pattern(buf, buf_size, 0, period, "acecof0123456789", pattern_length);
char ret_val;
unsigned int offset = 0;
unsigned int loop_count = 0;
for (; loop_count < expected_matches + 1; loop_count++) {
ASSERT_LT(offset, buf_size);
ret_val = nfaExecSheng32_B(nfa,
offset,
buf + offset,
(s64a) buf_size - offset,
periodic_pattern_callback,
&context);
offset = (context.match_count - 1) * context.period + context.pattern_length;
if(unlikely(ret_val != MO_ALIVE)) {
break;
}
}
/*check normal return*/
EXPECT_EQ(MO_ALIVE, ret_val);
/*check that we don't find additional match nor crash when no match are found*/
EXPECT_EQ(expected_matches + 1, loop_count);
/*check that we have all the matches*/
EXPECT_EQ(expected_matches, context.match_count);
}
/*
* nfaExecSheng32_Q runs like the _B version (callback), but exercises the message queue logic.
* We test it with a buffer having a few matches at fixed intervals and check that it finds them all.
*/
TEST(Sheng32, std_run_Q) {
#if defined(HAVE_SVE)
if(svcntb()<32) {
return;
}
#endif
struct mq *q;
unsigned int pattern_length = 16;
unsigned int period = 128;
const size_t buf_size = 200;
unsigned int expected_matches = buf_size/128 + 1;
u8 buf[buf_size];
struct callback_context context = {period, 0, pattern_length};
init_sheng_queue32(&q, buf, buf_size);
fill_pattern(buf, buf_size, 0, period, "acecof0123456789", pattern_length);
q->cur = 0;
q->items[q->cur].location = 0;
q->context = &context;
q->cb = periodic_pattern_callback;
nfaExecSheng32_Q(q->nfa, q, (s64a) buf_size);
/*check that we have all the matches*/
EXPECT_EQ(expected_matches, context.match_count);
delete q;
}
/*
* nfaExecSheng32_Q2 uses the message queue, but stops at match instead of using a callback.
* We test it with a buffer having a few matches at fixed intervals and check that it finds them all.
*/
TEST(Sheng32, std_run_Q2) {
#if defined(HAVE_SVE)
if(svcntb()<32) {
return;
}
#endif
struct mq *q;
unsigned int pattern_length = 16;
unsigned int period = 128;
const size_t buf_size = 200;
unsigned int expected_matches = buf_size/128 + 1;
u8 buf[buf_size];
init_sheng_queue32(&q, buf, buf_size);
fill_pattern(buf, buf_size, 0, period, "acecof0123456789", pattern_length);
q->cur = 0;
q->items[q->cur].location = 0;
char ret_val;
int location;
unsigned int loop_count = 0;
do {
ret_val = nfaExecSheng32_Q2(q->nfa, q, (s64a) buf_size);
location = q->items[q->cur].location;
loop_count++;
} while(likely((ret_val == MO_MATCHES_PENDING) && (location < (int)buf_size) && ((location % period) == pattern_length)));
/*check if it's a spurious match*/
EXPECT_EQ(0, (ret_val == MO_MATCHES_PENDING) && ((location % period) != pattern_length));
/*check that we have all the matches*/
EXPECT_EQ(expected_matches, loop_count-1);
delete q;
}
/*
* The message queue can also runs on the "history" buffer. We test it the same way as the normal
* buffer, expecting the same behavior.
* We test it with a buffer having a few matches at fixed intervals and check that it finds them all.
*/
TEST(Sheng32, history_run_Q2) {
#if defined(HAVE_SVE)
if(svcntb()<32) {
return;
}
#endif
struct mq *q;
unsigned int pattern_length = 16;
unsigned int period = 128;
const size_t buf_size = 200;
unsigned int expected_matches = buf_size/128 + 1;
u8 buf[buf_size];
init_sheng_queue32(&q, buf, buf_size);
fill_pattern(buf, buf_size, 0, period, "acecof0123456789", pattern_length);
q->history = buf;
q->hlength = buf_size;
q->cur = 0;
q->items[q->cur].location = -200;
char ret_val;
int location;
unsigned int loop_count = 0;
do {
ret_val = nfaExecSheng32_Q2(q->nfa, q, 0);
location = q->items[q->cur].location;
loop_count++;
} while(likely((ret_val == MO_MATCHES_PENDING) && (location > -(int)buf_size) && (location < 0) && (((buf_size + location) % period) == pattern_length)));
/*check if it's a spurious match*/
EXPECT_EQ(0, (ret_val == MO_MATCHES_PENDING) && (((buf_size + location) % period) != pattern_length));
/*check that we have all the matches*/
EXPECT_EQ(expected_matches, loop_count-1);
delete q;
}
#endif /* defined(HAVE_AVX512VBMI) || defined(HAVE_SVE) */
} /* namespace */

View File

@ -508,7 +508,7 @@ TEST(SuperVectorUtilsTest,Movemask256c){
u8 vec2[32] = {0};
u32 r = rand() % 100 + 1;
for(int i=0; i<32; i++) {
if (r & (1 << i)) {
if (r & (1U << i)) {
vec[i] = 0xff;
}
}

View File

@ -152,7 +152,6 @@ bool HS_CDECL readExpression(const std::string &input, std::string &expr,
UNUSED const char *eof = pe;
UNUSED const char *ts = p, *te = p;
int cs;
UNUSED int act;
assert(p);
assert(pe);

View File

@ -55,7 +55,7 @@ unique_ptr<hs_platform_info> xcompileReadMode(const char *s) {
assert(!err);
string str(s);
string mode = str.substr(0, str.find(":"));
//string mode = str.substr(0, str.find(":"));
string opt = str.substr(str.find(":")+1, str.npos);
bool found_mode = false;

View File

@ -223,7 +223,7 @@ public:
CorpusProperties &props);
~CorpusGeneratorImpl() = default;
void generateCorpus(vector<string> &data);
void generateCorpus(vector<string> &data) override;
private:
unsigned char getRandomChar();
@ -419,7 +419,7 @@ public:
CorpusProperties &props);
~CorpusGeneratorUtf8() = default;
void generateCorpus(vector<string> &data);
void generateCorpus(vector<string> &data) override;
private:
unichar getRandomChar();

View File

@ -47,7 +47,7 @@ class NGHolder;
} // namespace ue2
struct CorpusGenerationFailure {
explicit CorpusGenerationFailure(const std::string s) :
explicit CorpusGenerationFailure(const std::string& s) :
message(std::move(s)) {}
std::string message;
};