mirror of
https://github.com/VectorCamp/vectorscan.git
synced 2025-11-15 17:02:14 +03:00
Speed up truffle with 256b TBL instructions
256b wide SVE vectors allow some simplification of truffle. Up to 40% speedup on graviton3. Going from 12500 MB/s to 17000 MB/s onhe microbenchmark. SVE2 also offer this capability for 128b vector with a speedup around 25% compared to normal SVE Add unit tests and benchmark for this wide variant Signed-off-by: Yoan Picchi <yoan.picchi@arm.com>
This commit is contained in:
@@ -73,7 +73,12 @@ const u8 *run_hwlm_accel(const union AccelAux *aux, const u8 *ptr,
|
||||
return shuftiExec(aux->shufti.lo, aux->shufti.hi, ptr, end);
|
||||
case ACCEL_TRUFFLE:
|
||||
DEBUG_PRINTF("truffle\n");
|
||||
return truffleExec(aux->truffle.mask1, aux->truffle.mask2, ptr, end);
|
||||
return truffleExec(aux->truffle.mask_lo, aux->truffle.mask_hi, ptr, end);
|
||||
#ifdef CAN_USE_WIDE_TRUFFLE
|
||||
case ACCEL_TRUFFLE_WIDE:
|
||||
DEBUG_PRINTF("truffle wide\n");
|
||||
return truffleExecWide(aux->truffle.mask, ptr, end);
|
||||
#endif // CAN_USE_WIDE_TRUFFLE
|
||||
default:
|
||||
/* no acceleration, fall through and return current ptr */
|
||||
DEBUG_PRINTF("no accel; %u\n", (int)aux->accel_type);
|
||||
|
||||
@@ -142,9 +142,18 @@ const u8 *run_accel(const union AccelAux *accel, const u8 *c, const u8 *c_end) {
|
||||
return c;
|
||||
}
|
||||
|
||||
rv = truffleExec(accel->truffle.mask1, accel->truffle.mask2, c, c_end);
|
||||
rv = truffleExec(accel->truffle.mask_lo, accel->truffle.mask_hi, c, c_end);
|
||||
break;
|
||||
#ifdef CAN_USE_WIDE_TRUFFLE
|
||||
case ACCEL_TRUFFLE_WIDE:
|
||||
DEBUG_PRINTF("accel Truffle Wide %p %p\n", c, c_end);
|
||||
if (c + 15 >= c_end) {
|
||||
return c;
|
||||
}
|
||||
|
||||
rv = truffleExecWide(accel->truffle.mask, c, c_end);
|
||||
break;
|
||||
#endif
|
||||
case ACCEL_DSHUFTI:
|
||||
DEBUG_PRINTF("accel dshufti %p %p\n", c, c_end);
|
||||
if (c + 15 + 1 >= c_end) {
|
||||
|
||||
@@ -66,6 +66,7 @@ enum AccelType {
|
||||
ACCEL_VERM16,
|
||||
ACCEL_DVERM16,
|
||||
ACCEL_DVERM16_MASKED,
|
||||
ACCEL_TRUFFLE_WIDE,
|
||||
};
|
||||
|
||||
/** \brief Structure for accel framework. */
|
||||
@@ -136,8 +137,18 @@ union AccelAux {
|
||||
struct {
|
||||
u8 accel_type;
|
||||
u8 offset;
|
||||
m128 mask1;
|
||||
m128 mask2;
|
||||
union {
|
||||
m256 mask;
|
||||
struct {
|
||||
#if (SIMDE_ENDIAN_ORDER == SIMDE_ENDIAN_LITTLE)
|
||||
m128 mask_lo;
|
||||
m128 mask_hi;
|
||||
#else
|
||||
m128 mask_hi;
|
||||
m128 mask_lo;
|
||||
#endif
|
||||
};
|
||||
};
|
||||
} truffle;
|
||||
};
|
||||
|
||||
|
||||
@@ -576,10 +576,19 @@ accel_dfa_build_strat::buildAccel(UNUSED dstate_id_t this_idx,
|
||||
}
|
||||
|
||||
assert(!info.cr.none());
|
||||
accel->accel_type = ACCEL_TRUFFLE;
|
||||
truffleBuildMasks(info.cr,
|
||||
reinterpret_cast<u8 *>(&accel->truffle.mask1),
|
||||
reinterpret_cast<u8 *>(&accel->truffle.mask2));
|
||||
#if defined(CAN_USE_WIDE_TRUFFLE)
|
||||
if(CAN_USE_WIDE_TRUFFLE) {
|
||||
accel->accel_type = ACCEL_TRUFFLE_WIDE;
|
||||
truffleBuildMasksWide(info.cr,
|
||||
reinterpret_cast<u8 *>(&accel->truffle.mask));
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
accel->accel_type = ACCEL_TRUFFLE;
|
||||
truffleBuildMasks(info.cr,
|
||||
reinterpret_cast<u8 *>(&accel->truffle.mask_lo),
|
||||
reinterpret_cast<u8 *>(&accel->truffle.mask_hi));
|
||||
}
|
||||
DEBUG_PRINTF("state %hu is truffle\n", this_idx);
|
||||
}
|
||||
|
||||
|
||||
@@ -93,6 +93,8 @@ const char *accelName(u8 accel_type) {
|
||||
return "double-shufti";
|
||||
case ACCEL_TRUFFLE:
|
||||
return "truffle";
|
||||
case ACCEL_TRUFFLE_WIDE:
|
||||
return "truffle wide";
|
||||
case ACCEL_RED_TAPE:
|
||||
return "red tape";
|
||||
default:
|
||||
@@ -178,6 +180,13 @@ void dumpTruffleCharReach(FILE *f, const u8 *hiset, const u8 *hiclear) {
|
||||
describeClass(cr).c_str());
|
||||
}
|
||||
|
||||
static
|
||||
void dumpWideTruffleCharReach(FILE *f, const u8 *mask) {
|
||||
CharReach cr = truffle2crWide(mask);
|
||||
fprintf(f, "count %zu class %s\n", cr.count(),
|
||||
describeClass(cr).c_str());
|
||||
}
|
||||
|
||||
static
|
||||
void dumpTruffleMasks(FILE *f, const u8 *hiset, const u8 *hiclear) {
|
||||
fprintf(f, "lo %s\n", dumpMask(hiset, 128).c_str());
|
||||
@@ -231,10 +240,17 @@ void dumpAccelInfo(FILE *f, const AccelAux &accel) {
|
||||
break;
|
||||
case ACCEL_TRUFFLE: {
|
||||
fprintf(f, "\n");
|
||||
dumpTruffleMasks(f, reinterpret_cast<const u8 *>(&accel.truffle.mask1),
|
||||
reinterpret_cast<const u8 *>(&accel.truffle.mask2));
|
||||
dumpTruffleCharReach(f, reinterpret_cast<const u8 *>(&accel.truffle.mask1),
|
||||
reinterpret_cast<const u8 *>(&accel.truffle.mask2));
|
||||
dumpTruffleMasks(f, reinterpret_cast<const u8 *>(&accel.truffle.mask_lo),
|
||||
reinterpret_cast<const u8 *>(&accel.truffle.mask_hi));
|
||||
dumpTruffleCharReach(f, reinterpret_cast<const u8 *>(&accel.truffle.mask_lo),
|
||||
reinterpret_cast<const u8 *>(&accel.truffle.mask_hi));
|
||||
break;
|
||||
}
|
||||
case ACCEL_TRUFFLE_WIDE: {
|
||||
fprintf(f, "\n");
|
||||
dumpTruffleMasks(f, reinterpret_cast<const u8 *>(&accel.truffle.mask_lo),
|
||||
reinterpret_cast<const u8 *>(&accel.truffle.mask_hi));
|
||||
dumpWideTruffleCharReach(f, reinterpret_cast<const u8 *>(&accel.truffle.mask));
|
||||
break;
|
||||
}
|
||||
default:
|
||||
|
||||
@@ -97,11 +97,20 @@ void buildAccelSingle(const AccelInfo &info, AccelAux *aux) {
|
||||
|
||||
if (outs <= ACCEL_MAX_STOP_CHAR) {
|
||||
DEBUG_PRINTF("building Truffle for %zu chars\n", outs);
|
||||
aux->accel_type = ACCEL_TRUFFLE;
|
||||
aux->truffle.offset = offset;
|
||||
truffleBuildMasks(info.single_stops,
|
||||
reinterpret_cast<u8 *>(&aux->truffle.mask1),
|
||||
reinterpret_cast<u8 *>(&aux->truffle.mask2));
|
||||
#if defined(CAN_USE_WIDE_TRUFFLE)
|
||||
if(CAN_USE_WIDE_TRUFFLE) {
|
||||
aux->accel_type = ACCEL_TRUFFLE_WIDE;
|
||||
truffleBuildMasksWide(info.single_stops,
|
||||
reinterpret_cast<u8 *>(&aux->truffle.mask));
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
aux->accel_type = ACCEL_TRUFFLE;
|
||||
truffleBuildMasks(info.single_stops,
|
||||
reinterpret_cast<u8 *>(&aux->truffle.mask_lo),
|
||||
reinterpret_cast<u8 *>(&aux->truffle.mask_hi));
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
@@ -34,25 +34,82 @@
|
||||
*/
|
||||
|
||||
#ifdef HAVE_SVE
|
||||
#ifdef HAVE_SVE2
|
||||
|
||||
/*
|
||||
* blockSingleMask takes in a character set (as masks) and a string and return for each character
|
||||
* of the string weither or not it is part of the set.
|
||||
* of the string wether or not it is part of the set.
|
||||
*
|
||||
* 'shuf_mask_lo_highclear' and 'shuf_mask_lo_highset' are 128-bit masks where each bit
|
||||
* represents whether or not a character is in the character set. The 'highclear' and
|
||||
* 'highset' in the name refers to the MSb of the byte of the character (allowing two
|
||||
* 128-bit masks to cover all 256 values).
|
||||
*
|
||||
*
|
||||
* The mask is an array of 32 bytes and is encoded this way:
|
||||
* Let C be a character in the set. The bit describing that character is at byte[C%32] and
|
||||
* within that byte, it's at bit[C/32]
|
||||
* As example, 'a' = 0x61, so the resulting mask will be: 0x00 0x08 0x00 0x00 0x00 ...
|
||||
*
|
||||
* Assume the mask is in one of those configurations:
|
||||
* - both masks are exactly 128b wide
|
||||
* - the first mask is exactly 256b wide and the second is zeroed.
|
||||
* - the first mask is more than 256b wide, with bits past the 256th being zero, and the second mask is zeroed.
|
||||
*/
|
||||
static really_inline
|
||||
svuint8_t blockSingleMaskWideSVE2(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_highset, svuint8_t chars) {
|
||||
const svuint8_t pshub_mask = svdup_u8(0x1f);
|
||||
const svuint8_t unique_bit_per_lane_mask = svreinterpret_u8(svdup_u64(0x8040201008040201));
|
||||
svuint8x2_t shuf_mask_32 = svcreate2(shuf_mask_lo_highclear, shuf_mask_lo_highset);
|
||||
/*
|
||||
* svtbl2 does a table lookup. Each byte in the second argument indexes into the array of bytes
|
||||
* in shuf_mask_32 and saves the result in the corresponding byte of byte_select.
|
||||
* We mask the chars so that we are using the low nibble of char as the index.
|
||||
*/
|
||||
svuint8_t byte_select = svtbl2(shuf_mask_32, svand_x(svptrue_b8(), chars, pshub_mask));
|
||||
|
||||
/*
|
||||
* We now have selected the byte that contain the bit corresponding to the char. We need to
|
||||
* further filter it, otherwise we'd get a match for any character % 32 to a searched character
|
||||
*
|
||||
* The low nibble was used previously to select the byte out of the mask. The high nibble is
|
||||
* used to select the bit out of the byte. So we shift everything right by 5.
|
||||
*
|
||||
* Using svtbl, we can make an array where each element is a different bit. Using the high
|
||||
* nibble we can get a mask selecting only the bit out of a byte that may have the relevant
|
||||
* charset char.
|
||||
*/
|
||||
svuint8_t char_high_nibble = svlsr_x(svptrue_b8(), chars, 5);
|
||||
svuint8_t bit_select = svtbl(unique_bit_per_lane_mask, char_high_nibble);
|
||||
/*
|
||||
* We apply the bit_select mask onto the selected byte. What is left is the bit in the charset
|
||||
* encoding the character in char. A non zero value means the char was in the charset
|
||||
*
|
||||
* The _x suffix only works if we process a full char vector. If we were to use a partial
|
||||
* vector, then _z and a mask would be required on this svand only. Otherwise, the disabled
|
||||
* lanes may have arbitrary values
|
||||
*/
|
||||
return svand_x(svptrue_b8(), byte_select, bit_select);
|
||||
}
|
||||
#endif //HAVE_SVE2
|
||||
|
||||
/*
|
||||
* blockSingleMask takes in a character set (as masks) and a string and return for each character
|
||||
* of the string wether or not it is part of the set.
|
||||
*
|
||||
* 'shuf_mask_lo_highclear' and 'shuf_mask_lo_highset' are 128-bit masks where each bit
|
||||
* represents whether or not a character is in the character set. The 'highclear' and
|
||||
* 'highset' in the name refers to the MSb of the byte of the character (allowing two
|
||||
* 128-bit masks to cover all 256 values).
|
||||
*
|
||||
* The masks are arrays of 16 bytes each and are encoded this way:
|
||||
* Let C be a character in the set. The bit describing that character is at byte[C%16] and
|
||||
* within that byte, it's at bit[C/16]
|
||||
* As example, 'a' = 0x61, so the resulting mask will be: 0x00 0x40 0x00 0x00 0x00 ...
|
||||
*
|
||||
*
|
||||
* Assume both mask are 128b wide. If they are larger, the additional bits must be zero
|
||||
*/
|
||||
static really_inline
|
||||
svuint8_t blockSingleMask(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_highset, svuint8_t chars) {
|
||||
svuint8_t blockSingleMaskSVE(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_highset, svuint8_t chars) {
|
||||
|
||||
const svuint8_t highconst = svdup_u8(0x80);
|
||||
const svuint8_t pshub_mask = svdup_u8(0x8f);
|
||||
@@ -67,7 +124,7 @@ svuint8_t blockSingleMask(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_
|
||||
*/
|
||||
svuint8_t byte_select_low = svtbl(shuf_mask_lo_highclear, svand_x(svptrue_b8(), chars, pshub_mask));
|
||||
|
||||
/*
|
||||
/*
|
||||
* We flip the MSb of the chars and do the same table lookup with the highset mask.
|
||||
* This way it's the characters with MSb cleared that will result in out of bands indexes.
|
||||
* This allows us to cover the full range (0-127 and 128-255)
|
||||
@@ -78,10 +135,10 @@ svuint8_t blockSingleMask(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_
|
||||
/*
|
||||
* We now have selected the byte that contain the bit corresponding to the char. We need to
|
||||
* further filter it, otherwise we'd get a match for any character % 16 to a searched character
|
||||
*
|
||||
*
|
||||
* The low nibble was used previously to select the byte out of the mask. The high nibble is
|
||||
* used to select the bit out of the byte. So we shift everything right by 4.
|
||||
*
|
||||
*
|
||||
* Using svtbl, we can make an array where each element is a different bit. Using the high
|
||||
* nibble we can get a mask selecting only the bit out of a byte that may have the relevant
|
||||
* charset char.
|
||||
@@ -92,17 +149,88 @@ svuint8_t blockSingleMask(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_
|
||||
* For every lane, only one of the byte selected may have a value, so we can OR them. We
|
||||
* then apply the bit_select mask. What is left is the bit in the charset encoding the
|
||||
* character in char. A non zero value means the char was in the charset
|
||||
*
|
||||
*
|
||||
* The _x suffix only works if we process a full char vector. If we were to use a partial
|
||||
* vector, then _z and a mask would be required on this svand only. Otherwise, the disabled
|
||||
* lanes may have arbitrary values
|
||||
*/
|
||||
svuint8_t res = svand_x(svptrue_b8(), svorr_x(svptrue_b8(), byte_select_low, byte_select_high), bit_select);
|
||||
|
||||
return res;
|
||||
return svand_x(svptrue_b8(), svorr_x(svptrue_b8(), byte_select_low, byte_select_high), bit_select);
|
||||
}
|
||||
#else
|
||||
|
||||
/*
|
||||
* blockSingleMask takes in a character set (as masks) and a string and return for each character
|
||||
* of the string wether or not it is part of the set.
|
||||
*
|
||||
* 'shuf_mask_32' is a 256-bit masks where each bit represents whether or not a character is in
|
||||
* the character set.
|
||||
*
|
||||
* The mask is an array of 32 bytes and is encoded this way:
|
||||
* Let C be a character in the set. The bit describing that character is at byte[C%32] and
|
||||
* within that byte, it's at bit[C/32]
|
||||
* As example, 'a' = 0x61, so the resulting mask will be: 0x00 0x08 0x00 0x00 0x00 ...
|
||||
*
|
||||
* Assume both mask are 128b wide. If they are larger, the additional bits must be zero
|
||||
*/
|
||||
static really_inline
|
||||
svuint8_t blockSingleMaskWideSVE(svuint8_t shuf_mask_32, svuint8_t chars) {//TODO I might have issues with the type
|
||||
|
||||
const svuint8_t pshub_mask = svdup_u8(0x1f);
|
||||
const svuint8_t unique_bit_per_lane_mask = svreinterpret_u8(svdup_u64(0x8040201008040201));
|
||||
|
||||
/*
|
||||
* svtbl does a table lookup. Each byte in the second argument indexes into the array of bytes
|
||||
* in shuf_mask_32 and saves the result in the corresponding byte of byte_select.
|
||||
* We mask the chars so that we are using the low nibble of char as the index.
|
||||
*/
|
||||
svuint8_t byte_select = svtbl(shuf_mask_32, svand_x(svptrue_b8(), chars, pshub_mask));
|
||||
|
||||
/*
|
||||
* We now have selected the byte that contain the bit corresponding to the char. We need to
|
||||
* further filter it, otherwise we'd get a match for any character % 32 to a searched character
|
||||
*
|
||||
* The low nibble was used previously to select the byte out of the mask. The high nibble is
|
||||
* used to select the bit out of the byte. So we shift everything right by 5.
|
||||
*
|
||||
* Using svtbl, we can make an array where each element is a different bit. Using the high
|
||||
* nibble we can get a mask selecting only the bit out of a byte that may have the relevant
|
||||
* charset char.
|
||||
*/
|
||||
svuint8_t char_high_nibble = svlsr_x(svptrue_b8(), chars, 5);
|
||||
svuint8_t bit_select = svtbl(unique_bit_per_lane_mask, char_high_nibble);
|
||||
/*
|
||||
* We apply the bit_select mask onto the selected byte. What is left is the bit in the charset
|
||||
* encoding the character in char. A non zero value means the char was in the charset
|
||||
*
|
||||
* The _x suffix only works if we process a full char vector. If we were to use a partial
|
||||
* vector, then _z and a mask would be required on this svand only. Otherwise, the disabled
|
||||
* lanes may have arbitrary values
|
||||
*/
|
||||
return svand_x(svptrue_b8(), byte_select, bit_select);
|
||||
}
|
||||
|
||||
/* require normal truffle compilation. The 256b mask is split between the two parameters */
|
||||
static really_inline
|
||||
svuint8_t blockSingleMask(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_highset, svuint8_t chars) {
|
||||
return blockSingleMaskSVE(shuf_mask_lo_highclear, shuf_mask_lo_highset, chars);
|
||||
}
|
||||
|
||||
/* require wide truffle compilation. The 256b mask is fully contained in the first parameter */
|
||||
static really_inline
|
||||
svuint8_t blockSingleMaskWide32(svuint8_t shuf_mask_32, svuint8_t chars) {
|
||||
return blockSingleMaskWideSVE(shuf_mask_32, chars);
|
||||
}
|
||||
|
||||
#ifdef HAVE_SVE2
|
||||
/* require wide truffle compilation. The 256b mask is split between the two parameters if the vector is 128b,
|
||||
* or fully contained in the first parameter is it's 256b and more*/
|
||||
static really_inline
|
||||
svuint8_t blockSingleMaskWide(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_highset, svuint8_t chars) {
|
||||
return blockSingleMaskWideSVE2(shuf_mask_lo_highclear, shuf_mask_lo_highset, chars);
|
||||
}
|
||||
#endif //HAVE_SVE2
|
||||
#endif //HAVE_SVE
|
||||
|
||||
/* require normal truffle compilation. The 256b mask is split between the two parameters */
|
||||
template <uint16_t S>
|
||||
static really_inline
|
||||
const SuperVector<S> blockSingleMask(SuperVector<S> shuf_mask_lo_highclear, SuperVector<S> shuf_mask_lo_highset, SuperVector<S> chars) {
|
||||
@@ -115,7 +243,7 @@ const SuperVector<S> blockSingleMask(SuperVector<S> shuf_mask_lo_highclear, Supe
|
||||
highconst.print8("highconst");
|
||||
SuperVector<S> shuf_mask_hi = SuperVector<S>::dup_u64(0x8040201008040201);
|
||||
shuf_mask_hi.print8("shuf_mask_hi");
|
||||
|
||||
|
||||
SuperVector<S> shuf1 = shuf_mask_lo_highclear.pshufb(chars);
|
||||
shuf1.print8("shuf1");
|
||||
SuperVector<S> t1 = chars ^ highconst;
|
||||
@@ -131,4 +259,3 @@ const SuperVector<S> blockSingleMask(SuperVector<S> shuf_mask_lo_highclear, Supe
|
||||
|
||||
return !res.eq(SuperVector<S>::Zeroes());
|
||||
}
|
||||
#endif //HAVE_SVE
|
||||
@@ -181,6 +181,9 @@ void dumpAccelText(FILE *f, const union AccelAux *accel) {
|
||||
case ACCEL_TRUFFLE:
|
||||
fprintf(f, ":M");
|
||||
break;
|
||||
case ACCEL_TRUFFLE_WIDE:
|
||||
fprintf(f, ":MM");
|
||||
break;
|
||||
default:
|
||||
fprintf(f, ":??");
|
||||
break;
|
||||
@@ -200,6 +203,7 @@ void dumpAccelDot(FILE *f, u16 i, const union AccelAux *accel) {
|
||||
case ACCEL_SHUFTI:
|
||||
case ACCEL_DSHUFTI:
|
||||
case ACCEL_TRUFFLE:
|
||||
case ACCEL_TRUFFLE_WIDE:
|
||||
fprintf(f, "%u [ color = darkgreen style=diagonals ];\n", i);
|
||||
break;
|
||||
default:
|
||||
|
||||
@@ -306,6 +306,7 @@ void dumpAccelDot(FILE *f, u16 i, const union AccelAux *accel) {
|
||||
case ACCEL_SHUFTI:
|
||||
case ACCEL_DSHUFTI:
|
||||
case ACCEL_TRUFFLE:
|
||||
case ACCEL_TRUFFLE_WIDE:
|
||||
fprintf(f, "%u [ color = darkgreen style=diagonals ];\n", i);
|
||||
break;
|
||||
default:
|
||||
|
||||
@@ -38,15 +38,48 @@
|
||||
#include "util/bitutils.h"
|
||||
|
||||
#include "truffle_simd.hpp"
|
||||
#ifdef CAN_USE_WIDE_TRUFFLE
|
||||
#ifdef HAVE_SVE
|
||||
const u8 *truffleExecWide(m256 mask, const u8 *buf,
|
||||
const u8 *buf_end) {
|
||||
if (svcntb() == 16) {
|
||||
return truffleExecSVE<true, true>(mask, buf, buf_end);
|
||||
} else {
|
||||
return truffleExecSVE<true, false>(mask, buf, buf_end);
|
||||
}
|
||||
}
|
||||
|
||||
const u8 *rtruffleExecWide(m256 mask, const u8 *buf,
|
||||
const u8 *buf_end) {
|
||||
if (svcntb() == 16) {
|
||||
return rtruffleExecSVE<true, true>(mask, buf, buf_end);
|
||||
} else {
|
||||
return rtruffleExecSVE<true, false>(mask, buf, buf_end);
|
||||
}
|
||||
}
|
||||
#else // HAVE_SVE
|
||||
#error "Wide truffle enabled for the target architecture but no implementation found"
|
||||
#endif // HAVE_SVE
|
||||
#endif // CAN_USE_WIDE_TRUFFLE
|
||||
|
||||
|
||||
#ifdef HAVE_SVE
|
||||
const u8 *truffleExec(m128 mask_lo, m128 mask_hi, const u8 *buf,
|
||||
const u8 *buf_end) {
|
||||
return truffleExecSVE(mask_lo, mask_hi, buf, buf_end);
|
||||
if (svcntb() == 16) {
|
||||
return truffleExecSVE<false, true>({.lo = mask_lo, .hi = mask_hi}, buf, buf_end);
|
||||
} else {
|
||||
return truffleExecSVE<false, false>({.lo = mask_lo, .hi = mask_hi}, buf, buf_end);
|
||||
}
|
||||
}
|
||||
|
||||
const u8 *rtruffleExec(m128 mask_lo, m128 mask_hi, const u8 *buf,
|
||||
const u8 *buf_end) {
|
||||
return rtruffleExecSVE(mask_lo, mask_hi, buf, buf_end);
|
||||
if (svcntb() == 16) {
|
||||
return rtruffleExecSVE<false, true>({.lo = mask_lo, .hi = mask_hi}, buf, buf_end);
|
||||
} else {
|
||||
return rtruffleExecSVE<false, false>({.lo = mask_lo, .hi = mask_hi}, buf, buf_end);
|
||||
}
|
||||
}
|
||||
#else
|
||||
const u8 *truffleExec(m128 mask_lo, m128 mask_hi, const u8 *buf,
|
||||
|
||||
@@ -42,6 +42,14 @@ extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#ifdef CAN_USE_WIDE_TRUFFLE
|
||||
const u8 *truffleExecWide(m256 mask, const u8 *buf,
|
||||
const u8 *buf_end);
|
||||
|
||||
const u8 *rtruffleExecWide(m256 mask, const u8 *buf,
|
||||
const u8 *buf_end);
|
||||
#endif
|
||||
|
||||
const u8 *truffleExec(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset,
|
||||
const u8 *buf, const u8 *buf_end);
|
||||
|
||||
|
||||
@@ -45,6 +45,14 @@
|
||||
#ifdef HAVE_SVE
|
||||
static really_inline
|
||||
svuint8_t blockSingleMask(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_highset, svuint8_t chars);
|
||||
|
||||
static really_inline
|
||||
svuint8_t blockSingleMaskWide32(svuint8_t shuf_mask_32, svuint8_t chars);
|
||||
|
||||
#ifdef HAVE_SVE2
|
||||
static really_inline
|
||||
svuint8_t blockSingleMaskWide(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_highset, svuint8_t chars);
|
||||
#endif //HAVE_SVE2
|
||||
#else
|
||||
template <uint16_t S>
|
||||
static really_inline
|
||||
@@ -64,19 +72,36 @@ const SuperVector<S> blockSingleMask(SuperVector<S> shuf_mask_lo_highclear, Supe
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_SVE
|
||||
|
||||
const u8 *truffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset,
|
||||
template <bool is_wide, bool is_vector_128b>
|
||||
static really_inline
|
||||
const u8 *truffleExecSVE(m256 shuf_mask_32,
|
||||
const u8 *buf, const u8 *buf_end);
|
||||
|
||||
const u8 *rtruffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset,
|
||||
template <bool is_wide, bool is_vector_128b>
|
||||
static really_inline
|
||||
const u8 *rtruffleExecSVE(m256 shuf_mask_32,
|
||||
const u8 *buf, const u8 *buf_end);
|
||||
|
||||
template <bool is_wide, bool is_vector_128b>
|
||||
static really_inline
|
||||
const u8 *scanBlock(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_highset, svuint8_t chars, const u8 *buf, bool forward) {
|
||||
|
||||
const size_t vector_size_int_8 = svcntb();
|
||||
|
||||
const svuint8_t result_mask = blockSingleMask(shuf_mask_lo_highclear, shuf_mask_lo_highset, chars);
|
||||
const u8 *scanBlock(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_highset,
|
||||
svuint8_t chars, const u8 *buf, const size_t vector_size_int_8, bool forward)
|
||||
{
|
||||
svuint8_t result_mask;
|
||||
if(is_wide) {
|
||||
if(is_vector_128b) {
|
||||
#ifdef HAVE_SVE2
|
||||
result_mask = blockSingleMaskWide(shuf_mask_lo_highclear, shuf_mask_lo_highset, chars);
|
||||
#else
|
||||
DEBUG_PRINTF("Wide Truffle is not supported with 128b vectors unless SVE2 is enabled");
|
||||
assert(false);
|
||||
#endif
|
||||
} else {
|
||||
result_mask = blockSingleMaskWide32(shuf_mask_lo_highclear, chars);
|
||||
}
|
||||
} else {
|
||||
result_mask = blockSingleMask(shuf_mask_lo_highclear, shuf_mask_lo_highset, chars);
|
||||
}
|
||||
uint64_t index;
|
||||
if (forward) {
|
||||
index = first_non_zero(vector_size_int_8, result_mask);
|
||||
@@ -84,25 +109,33 @@ const u8 *scanBlock(svuint8_t shuf_mask_lo_highclear, svuint8_t shuf_mask_lo_hig
|
||||
index = last_non_zero(vector_size_int_8, result_mask);
|
||||
}
|
||||
|
||||
if(index < vector_size_int_8) {
|
||||
if (index < vector_size_int_8) {
|
||||
return buf+index;
|
||||
} else {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
really_inline
|
||||
const u8 *truffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset, const u8 *buf, const u8 *buf_end) {
|
||||
template <bool is_wide, bool is_vector_128b>
|
||||
static really_inline
|
||||
const u8 *truffleExecSVE(m256 shuf_mask_32, const u8 *buf, const u8 *buf_end) {
|
||||
const int vect_size_int8 = svcntb();
|
||||
// Activate only 16 lanes to read the m128 buffers
|
||||
const svbool_t lane_pred_16 = svwhilelt_b8(0, 16);
|
||||
assert(buf && buf_end);
|
||||
assert(buf < buf_end);
|
||||
DEBUG_PRINTF("truffle %p len %zu\n", buf, buf_end - buf);
|
||||
DEBUG_PRINTF("b %s\n", buf);
|
||||
|
||||
svuint8_t wide_shuf_mask_lo_highclear = svld1(lane_pred_16, (uint8_t*) &shuf_mask_lo_highclear);
|
||||
svuint8_t wide_shuf_mask_lo_highset = svld1(lane_pred_16, (uint8_t*) &shuf_mask_lo_highset);
|
||||
svuint8_t wide_shuf_mask_lo_highclear;
|
||||
svuint8_t wide_shuf_mask_lo_highset;
|
||||
if (is_wide && !is_vector_128b) {
|
||||
const svbool_t lane_pred_32 = svwhilelt_b8(0, 32);
|
||||
wide_shuf_mask_lo_highclear = svld1(lane_pred_32, (uint8_t*) &shuf_mask_32.lo);
|
||||
wide_shuf_mask_lo_highset = svld1(svpfalse(), (uint8_t*) &shuf_mask_32.hi); /* empty vector */
|
||||
} else {
|
||||
const svbool_t lane_pred_16 = svwhilelt_b8(0, 16);
|
||||
wide_shuf_mask_lo_highclear = svld1(lane_pred_16, (uint8_t*) &shuf_mask_32.lo);
|
||||
wide_shuf_mask_lo_highset = svld1(lane_pred_16, (uint8_t*) &shuf_mask_32.hi);
|
||||
}
|
||||
|
||||
const u8 *work_buffer = buf;
|
||||
const u8 *ret_val;
|
||||
@@ -118,16 +151,16 @@ const u8 *truffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset,
|
||||
if (!ISALIGNED_N(work_buffer, vect_size_int8)) {
|
||||
svuint8_t chars = svld1(svptrue_b8(), work_buffer);
|
||||
const u8 *alligned_buffer = ROUNDUP_PTR(work_buffer, vect_size_int8);
|
||||
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer, true);
|
||||
ret_val = scanBlock<is_wide, is_vector_128b>(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer, vect_size_int8, true);
|
||||
if (ret_val && ret_val < alligned_buffer) return ret_val;
|
||||
work_buffer = alligned_buffer;
|
||||
}
|
||||
|
||||
while(work_buffer + vect_size_int8 <= buf_end) {
|
||||
while (work_buffer + vect_size_int8 <= buf_end) {
|
||||
__builtin_prefetch(work_buffer + 16*64);
|
||||
DEBUG_PRINTF("work_buffer %p \n", work_buffer);
|
||||
svuint8_t chars = svld1(svptrue_b8(), work_buffer);
|
||||
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer, true);
|
||||
ret_val = scanBlock<is_wide, is_vector_128b>(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer, vect_size_int8, true);
|
||||
if (ret_val) return ret_val;
|
||||
work_buffer += vect_size_int8;
|
||||
}
|
||||
@@ -147,7 +180,7 @@ const u8 *truffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset,
|
||||
chars = svld1(svptrue_b8(), buf_end - vect_size_int8);
|
||||
end_buf = buf_end - vect_size_int8;
|
||||
}
|
||||
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, end_buf, true);
|
||||
ret_val = scanBlock<is_wide, is_vector_128b>(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, end_buf, vect_size_int8, true);
|
||||
DEBUG_PRINTF("ret_val %p \n", ret_val);
|
||||
if (ret_val && ret_val < buf_end) return ret_val;
|
||||
}
|
||||
@@ -155,18 +188,26 @@ const u8 *truffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset,
|
||||
return buf_end;
|
||||
}
|
||||
|
||||
really_inline
|
||||
const u8 *rtruffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset, const u8 *buf, const u8 *buf_end){
|
||||
template <bool is_wide, bool is_vector_128b>
|
||||
static really_inline
|
||||
const u8 *rtruffleExecSVE(m256 shuf_mask_32, const u8 *buf, const u8 *buf_end){
|
||||
const int vect_size_int8 = svcntb();
|
||||
// Activate only 16 lanes to read the m128 buffers
|
||||
const svbool_t lane_pred_16 = svwhilelt_b8(0, 16);
|
||||
assert(buf && buf_end);
|
||||
assert(buf < buf_end);
|
||||
DEBUG_PRINTF("truffle %p len %zu\n", buf, buf_end - buf);
|
||||
DEBUG_PRINTF("b %s\n", buf);
|
||||
|
||||
svuint8_t wide_shuf_mask_lo_highclear = svld1(lane_pred_16, (uint8_t*) &shuf_mask_lo_highclear);
|
||||
svuint8_t wide_shuf_mask_lo_highset = svld1(lane_pred_16, (uint8_t*) &shuf_mask_lo_highset);
|
||||
svuint8_t wide_shuf_mask_lo_highclear;
|
||||
svuint8_t wide_shuf_mask_lo_highset;
|
||||
if (is_wide && !is_vector_128b) {
|
||||
const svbool_t lane_pred_32 = svwhilelt_b8(0, 32);
|
||||
wide_shuf_mask_lo_highclear = svld1(lane_pred_32, (uint8_t*) &shuf_mask_32.lo);
|
||||
wide_shuf_mask_lo_highset = svld1(svpfalse(), (uint8_t*) &shuf_mask_32.hi); /* empty vector */
|
||||
} else {
|
||||
const svbool_t lane_pred_16 = svwhilelt_b8(0, 16);
|
||||
wide_shuf_mask_lo_highclear = svld1(lane_pred_16, (uint8_t*) &shuf_mask_32.lo);
|
||||
wide_shuf_mask_lo_highset = svld1(lane_pred_16, (uint8_t*) &shuf_mask_32.hi);
|
||||
}
|
||||
|
||||
const u8 *work_buffer = buf_end;
|
||||
const u8 *ret_val;
|
||||
@@ -182,7 +223,7 @@ const u8 *rtruffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset
|
||||
if (!ISALIGNED_N(work_buffer, vect_size_int8)) {
|
||||
svuint8_t chars = svld1(svptrue_b8(), work_buffer - vect_size_int8);
|
||||
const u8 *alligned_buffer = ROUNDDOWN_PTR(work_buffer, vect_size_int8);
|
||||
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer - vect_size_int8, false);
|
||||
ret_val = scanBlock<is_wide, is_vector_128b>(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer - vect_size_int8, vect_size_int8, false);
|
||||
DEBUG_PRINTF("ret_val %p \n", ret_val);
|
||||
if (ret_val >= alligned_buffer) return ret_val;
|
||||
work_buffer = alligned_buffer;
|
||||
@@ -195,7 +236,7 @@ const u8 *rtruffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset
|
||||
|
||||
work_buffer -= vect_size_int8;
|
||||
svuint8_t chars = svld1(svptrue_b8(), work_buffer);
|
||||
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer, false);
|
||||
ret_val = scanBlock<is_wide, is_vector_128b>(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, work_buffer, vect_size_int8, false);
|
||||
if (ret_val) return ret_val;
|
||||
}
|
||||
}
|
||||
@@ -211,7 +252,7 @@ const u8 *rtruffleExecSVE(m128 shuf_mask_lo_highclear, m128 shuf_mask_lo_highset
|
||||
} else {
|
||||
chars = svld1(svptrue_b8(), buf);
|
||||
}
|
||||
ret_val = scanBlock(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, buf, false);
|
||||
ret_val = scanBlock<is_wide, is_vector_128b>(wide_shuf_mask_lo_highclear, wide_shuf_mask_lo_highset, chars, buf, vect_size_int8, false);
|
||||
DEBUG_PRINTF("ret_val %p \n", ret_val);
|
||||
if (ret_val && ret_val < buf_end) return ret_val;
|
||||
}
|
||||
@@ -253,7 +294,7 @@ const u8 *truffleExecReal(const m128 &shuf_mask_lo_highclear, m128 shuf_mask_lo_
|
||||
d = dup;
|
||||
}
|
||||
|
||||
while(d + S <= buf_end) {
|
||||
while (d + S <= buf_end) {
|
||||
__builtin_prefetch(d + 16*64);
|
||||
DEBUG_PRINTF("d %p \n", d);
|
||||
SuperVector<S> chars = SuperVector<S>::load(d);
|
||||
|
||||
@@ -93,4 +93,33 @@ CharReach truffle2cr(const u8 *highclear, const u8 *highset) {
|
||||
return cr;
|
||||
}
|
||||
|
||||
void truffleBuildMasksWide(const CharReach &cr, u8 *shuf_mask) {
|
||||
memset(shuf_mask, 0, 2*sizeof(m128));
|
||||
|
||||
for (size_t v = cr.find_first(); v != CharReach::npos;
|
||||
v = cr.find_next(v)) {
|
||||
DEBUG_PRINTF("adding 0x%02x to shuf_mask\n", (u8)v);
|
||||
u8 *change_mask = shuf_mask;
|
||||
u8 low_nibble = v & 0x1f;
|
||||
u8 bits_567 = (v & 0xe0) >> 5;
|
||||
change_mask[low_nibble] |= 1 << bits_567;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Reconstruct the charclass that the truffle masks represent
|
||||
*/
|
||||
CharReach truffle2crWide(const u8 *shuf_mask) {
|
||||
CharReach cr;
|
||||
for (u8 i = 0; i < 32; i++) {
|
||||
u32 bits_567 = shuf_mask[i];
|
||||
while (bits_567) {
|
||||
u32 pos = findAndClearLSB_32(&bits_567);
|
||||
assert(pos < 8);
|
||||
cr.set(pos << 5 | i);
|
||||
}
|
||||
}
|
||||
return cr;
|
||||
}
|
||||
|
||||
} // namespc
|
||||
|
||||
@@ -37,6 +37,12 @@ namespace ue2 {
|
||||
void truffleBuildMasks(const CharReach &cr, u8 *mask1, u8 *mask2);
|
||||
CharReach truffle2cr(const u8 *lo_in, const u8 *hi_in);
|
||||
|
||||
/* The wide version uses 5 bits for the Byte index instead of 4.
|
||||
* It is to be used when TBL can process the whole 256b mask in one instruction
|
||||
*/
|
||||
void truffleBuildMasksWide(const CharReach &cr, u8 *mask);
|
||||
CharReach truffle2crWide(const u8 *mask);
|
||||
|
||||
}
|
||||
|
||||
#endif /* TRUFFLECOMPILE_H */
|
||||
|
||||
@@ -461,11 +461,20 @@ void findForwardAccelScheme(const vector<AccelString> &lits,
|
||||
aux->shufti.offset = verify_u8(min_offset);
|
||||
return;
|
||||
}
|
||||
|
||||
truffleBuildMasks(cr, reinterpret_cast<u8 *>(&aux->truffle.mask1), reinterpret_cast<u8 *>(&aux->truffle.mask2));
|
||||
#if defined(CAN_USE_WIDE_TRUFFLE)
|
||||
if(CAN_USE_WIDE_TRUFFLE) {
|
||||
aux->truffle.accel_type = ACCEL_TRUFFLE_WIDE;
|
||||
truffleBuildMasksWide(cr, reinterpret_cast<u8 *>(&aux->truffle.mask));
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
aux->truffle.accel_type = ACCEL_TRUFFLE;
|
||||
truffleBuildMasks(cr,
|
||||
reinterpret_cast<u8 *>(&aux->truffle.mask_lo),
|
||||
reinterpret_cast<u8 *>(&aux->truffle.mask_hi));
|
||||
}
|
||||
DEBUG_PRINTF("built truffle for %s (%zu chars, offset %u)\n",
|
||||
describeClass(cr).c_str(), cr.count(), min_offset);
|
||||
aux->truffle.accel_type = ACCEL_TRUFFLE;
|
||||
aux->truffle.offset = verify_u8(min_offset);
|
||||
}
|
||||
|
||||
|
||||
@@ -53,5 +53,11 @@
|
||||
#define HAVE_SVE2_BITPERM
|
||||
#endif
|
||||
|
||||
#if defined(HAVE_SVE2)
|
||||
#define CAN_USE_WIDE_TRUFFLE 1
|
||||
#elif defined(HAVE_SVE)
|
||||
#define CAN_USE_WIDE_TRUFFLE (svcntb() >= 32)
|
||||
#endif
|
||||
|
||||
#endif // UTIL_ARCH_ARM_H_
|
||||
|
||||
|
||||
@@ -34,5 +34,9 @@
|
||||
typedef int32x4_t m128;
|
||||
#endif
|
||||
|
||||
#if !defined(m256) && defined(m128)
|
||||
typedef struct {m128 lo; m128 hi;} m256;
|
||||
#endif
|
||||
|
||||
#endif /* SIMD_TYPES_ARM_H */
|
||||
|
||||
|
||||
@@ -31,3 +31,6 @@
|
||||
typedef int32x4_t m128;
|
||||
#endif
|
||||
|
||||
#if !defined(m256) && defined(m128)
|
||||
typedef struct {m128 lo; m128 hi;} m256;
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user