implementations for powerpc64el architecture

This commit is contained in:
apostolos 2021-09-24 13:01:14 +03:00
parent 079f3518d7
commit 0078c28ee6
2 changed files with 466 additions and 0 deletions

View File

@ -0,0 +1,429 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SIMD_IMPL_HPP
#define SIMD_IMPL_HPP
#include <cstdint>
#include <cstdio>
#include "ue2common.h"
#include "util/arch.h"
#include "util/unaligned.h"
#include "util/supervector/supervector.hpp"
// 128-bit Powerpc64le implementation
template<>
really_inline SuperVector<16>::SuperVector(SuperVector const &other)
{
u.v128[0] = other.u.v128[0];
}
template<>
really_inline SuperVector<16>::SuperVector(typename base_type::type const v)
{
u.v128[0] = v;
};
template<>
template<>
really_inline SuperVector<16>::SuperVector<int8_t>(int8_t const other)
{
//u.v128[0] = _mm_set1_epi8(other);
u.v128[0] = vdupq_n_u8(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<uint8_t>(uint8_t const other)
{
//u.v128[0] = _mm_set1_epi8(static_cast<int8_t>(other));
u.v128[0] = vdupq_n_u8(static_cast<int8_t>(other));
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<int16_t>(int16_t const other)
{
//u.v128[0] = _mm_set1_epi16(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<uint16_t>(uint16_t const other)
{
//u.v128[0] = _mm_set1_epi16(static_cast<int16_t>(other));
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<int32_t>(int32_t const other)
{
//u.v128[0] = _mm_set1_epi32(other);
u.v128[0] = vdupq_n_u32(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<uint32_t>(uint32_t const other)
{
//u.v128[0] = _mm_set1_epi32(static_cast<int32_t>(other));
u.v128[0] = vdupq_n_u32(static_cast<int32_t>(other));
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<int64_t>(int64_t const other)
{
//u.v128[0] = _mm_set1_epi64x(other);
u.v128[0] = vdupq_n_u64(other);
}
template<>
template<>
really_inline SuperVector<16>::SuperVector<uint64_t>(uint64_t const other)
{
//u.v128[0] = _mm_set1_epi64x(static_cast<int64_t>(other));
u.v128[0] = vdupq_n_u64(static_cast<int64_t>(other));
}
// Constants
template<>
really_inline SuperVector<16> SuperVector<16>::Ones(void)
{
//return {_mm_set1_epi8(0xFF)};
return {vec_splat_s8(0xFF)};
}
template<>
really_inline SuperVector<16> SuperVector<16>::Zeroes(void)
{
//return {_mm_set1_epi8(0)};
return {vec_splat_s8(0)};
}
// Methods
template <>
really_inline void SuperVector<16>::operator=(SuperVector<16> const &other)
{
u.v128[0] = other.u.v128[0];
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator&(SuperVector<16> const &b) const
{
//return {_mm_and_si128(u.v128[0], b.u.v128[0])};
return {vec_add(u.v128[0], b.u.v128[0])};
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator|(SuperVector<16> const &b) const
{
//return {_mm_or_si128(u.v128[0], b.u.v128[0])};
return {vec_or(u.v128[0], b.u.v128[0]);}
}
template <>
really_inline SuperVector<16> SuperVector<16>::operator^(SuperVector<16> const &b) const
{
//return {_mm_xor_si128(u.v128[0], b.u.v128[0])};
return {vec_xor(u.v128[0], b.u.v128[0]);}
}
template <>
really_inline SuperVector<16> SuperVector<16>::opandnot(SuperVector<16> const &b) const
{
//return {_mm_andnot_si128(u.v128[0], b.u.v128[0])};
return 0;
}
template <>
really_inline SuperVector<16> SuperVector<16>::eq(SuperVector<16> const &b) const
{
//return {_mm_cmpeq_epi8(u.v128[0], b.u.v128[0])};
return {vec_cmpeq(u.v128[0], b.u.v128[0])};
}
template <>
really_inline typename SuperVector<16>::movemask_type SuperVector<16>::movemask(void)const
{
//return _mm_movemask_epi8(u.v128[0]);
// Compute the mask from the input
uint64x2_t mask = vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(vandq_u8((uint8x16_t)u.v128[0], 0))));
uint64x2_t mask1 = (m128)vextq_s8(mask, Zeroes(), 7);
mask = vorrq_u8(mask, mask1);
// Get the resulting bytes
uint16_t output;
vst1q_lane_u16((uint16_t*)&output, (uint16x8_t)mask, 0);
return output;
return 0;
}
template <>
really_inline typename SuperVector<16>::movemask_type SuperVector<16>::eqmask(SuperVector<16> const b) const
{
return eq(b).movemask();
}
template <>
really_inline SuperVector<16> SuperVector<16>::rshift128_var(uint8_t const N) const
{
switch(N) {
case 1: return {vshrq_n_s32(u.v128[0], 1)}; break;
case 2: return {vshrq_n_s32(u.v128[0], 2)}; break;
case 3: return {vshrq_n_s32(u.v128[0], 3)}; break;
case 4: return {vshrq_n_s32(u.v128[0], 4)}; break;
case 5: return {vshrq_n_s32(u.v128[0], 5)}; break;
case 6: return {vshrq_n_s32(u.v128[0], 6)}; break;
case 7: return {vshrq_n_s32(u.v128[0], 7)}; break;
case 8: return {vshrq_n_s32(u.v128[0], 8)}; break;
case 9: return {vshrq_n_s32(u.v128[0], 9)}; break;
case 10: return {vshrq_n_s32(u.v128[0], 10)}; break;
case 11: return {vshrq_n_s32(u.v128[0], 11)}; break;
case 12: return {vshrq_n_s32(u.v128[0], 12)}; break;
case 13: return {vshrq_n_s32(u.v128[0], 13)}; break;
case 14: return {vshrq_n_s32(u.v128[0], 14)}; break;
case 15: return {vshrq_n_s32(u.v128[0], 15)}; break;
case 16: return Zeroes(); break;
default: break;
}
return *this;
}
#ifdef HS_OPTIMIZE
template <>
really_inline SuperVector<16> SuperVector<16>::operator>>(uint8_t const N) const
{
return {vshrq_n_s32(u.v128[0], N)};
}
#else
template <>
really_inline SuperVector<16> SuperVector<16>::operator>>(uint8_t const N) const
{
return rshift128_var(N);
}
#endif
template <>
really_inline SuperVector<16> SuperVector<16>::lshift128_var(uint8_t const N) const
{
switch(N) {
case 1: return {vshlq_n_s32(u.v128[0], 1)}; break;
case 2: return {vshlq_n_s32(u.v128[0], 2)}; break;
case 3: return {vshlq_n_s32(u.v128[0], 3)}; break;
case 4: return {vshlq_n_s32(u.v128[0], 4)}; break;
case 5: return {vshlq_n_s32(u.v128[0], 5)}; break;
case 6: return {vshlq_n_s32(u.v128[0], 6)}; break;
case 7: return {vshlq_n_s32(u.v128[0], 7)}; break;
case 8: return {vshlq_n_s32(u.v128[0], 8)}; break;
case 9: return {vshlq_n_s32(u.v128[0], 9)}; break;
case 10: return {vshlq_n_s32(u.v128[0], 10)}; break;
case 11: return {vshlq_n_s32(u.v128[0], 11)}; break;
case 12: return {vshlq_n_s32(u.v128[0], 12)}; break;
case 13: return {vshlq_n_s32(u.v128[0], 13)}; break;
case 14: return {vshlq_n_s32(u.v128[0], 14)}; break;
case 15: return {vshlq_n_s32(u.v128[0], 15)}; break;
case 16: return Zeroes(); break;
default: break;
}
return *this;
}
#ifdef HS_OPTIMIZE
template <>
really_inline SuperVector<16> SuperVector<16>::operator<<(uint8_t const N) const
{
return {vshlq_n_s32(u.v128[0], N)};
}
#else
template <>
really_inline SuperVector<16> SuperVector<16>::operator<<(uint8_t const N) const
{
return lshift128_var(N);
}
#endif
template <>
really_inline SuperVector<16> SuperVector<16>::loadu(void const *ptr)
{
//return _mm_loadu_si128((const m128 *)ptr);
return vld1q_s32((const int32_t *)ptr)
}
template <>
really_inline SuperVector<16> SuperVector<16>::load(void const *ptr)
{
//assert(ISALIGNED_N(ptr, alignof(SuperVector::size)));
//ptr = assume_aligned(ptr, SuperVector::size);
//return _mm_load_si128((const m128 *)ptr);
assert(ISALIGNED_N(ptr, alignof(m128)));
return vld1q_s32((const int32_t *)ptr);
}
template <>
really_inline SuperVector<16> SuperVector<16>::loadu_maskz(void const *ptr, uint8_t const len)
{
SuperVector<16> mask = Ones().rshift128_var(16 -len);
mask.print8("mask");
SuperVector<16> v = vld1q_s32((const int32_t *)ptr);
v.print8("v");
return mask & v;
}
#ifdef HS_OPTIMIZE
template<>
really_inline SuperVector<16> SuperVector<16>::alignr(SuperVector<16> &other, int8_t offset)
{
return {vextq_s8(u.v128[0], other.u.v128[0], offset)};
}
#else
template<>
really_inline SuperVector<16> SuperVector<16>::alignr(SuperVector<16> &other, int8_t offset)
{
switch(offset) {
case 0: return other; break;
case 1: return {vextq_s8(u.v128[0], other.u.v128[0], 1)}; break;
case 2: return {vextq_s8(u.v128[0], other.u.v128[0], 2)}; break;
case 3: return {vextq_s8(u.v128[0], other.u.v128[0], 3)}; break;
case 4: return {vextq_s8(u.v128[0], other.u.v128[0], 4)}; break;
case 5: return {vextq_s8(u.v128[0], other.u.v128[0], 5)}; break;
case 6: return {vextq_s8(u.v128[0], other.u.v128[0], 6)}; break;
case 7: return {vextq_s8(u.v128[0], other.u.v128[0], 7)}; break;
case 8: return {vextq_s8(u.v128[0], other.u.v128[0], 8)}; break;
case 9: return {vextq_s8(u.v128[0], other.u.v128[0], 9)}; break;
case 10: return {vextq_s8(u.v128[0], other.u.v128[0], 10)}; break;
case 11: return {vextq_s8(u.v128[0], other.u.v128[0], 11)}; break;
case 12: return {vextq_s8(u.v128[0], other.u.v128[0], 12)}; break;
case 13: return {vextq_s8(u.v128[0], other.u.v128[0], 13)}; break;
case 14: return {vextq_s8(u.v128[0], other.u.v128[0], 14)}; break;
case 15: return {vextq_s8(u.v128[0], other.u.v128[0], 15)}; break;
default: break;
}
return *this;
}
#endif
template<>
really_inline SuperVector<16> SuperVector<16>::pshufb(SuperVector<16> b)
{
//return {_mm_shuffle_epi8(u.v128[0], b.u.v128[0])};
int8x16_t btranslated = vandq_s8((int8x16_t)b.u.v128[0],vdupq_n_s8(0x8f));
return (m128)vqtbl1q_s8((int8x16_t)u.v128[0], (uint8x16_t)btranslated);
}
template<>
really_inline SuperVector<16> SuperVector<16>::pshufb_maskz(SuperVector<16> b, uint8_t const len)
{
SuperVector<16> mask = Ones().rshift128_var(16 -len);
return mask & pshufb(b);
}
#ifdef HS_OPTIMIZE
template<>
really_inline SuperVector<16> SuperVector<16>::lshift64(uint8_t const N)
{
return {vshlq_n_s64(u.v128[0], N)};
}
#else
template<>
really_inline SuperVector<16> SuperVector<16>::lshift64(uint8_t const N)
{
switch(N) {
case 0: return *this; break;
case 1: return {vshlq_n_s64(u.v128[0], 1)}; break;
case 2: return {vshlq_n_s64(u.v128[0], 2)}; break;
case 3: return {vshlq_n_s64(u.v128[0], 3)}; break;
case 4: return {vshlq_n_s64(u.v128[0], 4)}; break;
case 5: return {vshlq_n_s64(u.v128[0], 5)}; break;
case 6: return {vshlq_n_s64(u.v128[0], 6)}; break;
case 7: return {vshlq_n_s64(u.v128[0], 7)}; break;
case 8: return {vshlq_n_s64(u.v128[0], 8)}; break;
case 9: return {vshlq_n_s64(u.v128[0], 9)}; break;
case 10: return {vshlq_n_s64(u.v128[0], 10)}; break;
case 11: return {vshlq_n_s64(u.v128[0], 11)}; break;
case 12: return {vshlq_n_s64(u.v128[0], 12)}; break;
case 13: return {vshlq_n_s64(u.v128[0], 13)}; break;
case 14: return {vshlq_n_s64(u.v128[0], 14)}; break;
case 15: return {vshlq_n_s64(u.v128[0], 15)}; break;
case 16: return Zeroes();
default: break;
}
return *this;
}
#endif
#ifdef HS_OPTIMIZE
template<>
really_inline SuperVector<16> SuperVector<16>::rshift64(uint8_t const N)
{
return {vshrq_n_s64(u.v128[0], N)};
}
#else
template<>
really_inline SuperVector<16> SuperVector<16>::rshift64(uint8_t const N)
{
switch(N) {
case 0: return {vshrq_n_s64(u.v128[0], 0)}; break;
case 1: return {vshrq_n_s64(u.v128[0], 1)}; break;
case 2: return {vshrq_n_s64(u.v128[0], 2)}; break;
case 3: return {vshrq_n_s64(u.v128[0], 3)}; break;
case 4: return {vshrq_n_s64(u.v128[0], 4)}; break;
case 5: return {vshrq_n_s64(u.v128[0], 5)}; break;
case 6: return {vshrq_n_s64(u.v128[0], 6)}; break;
case 7: return {vshrq_n_s64(u.v128[0], 7)}; break;
case 8: return {vshrq_n_s64(u.v128[0], 8)}; break;
case 9: return {vshrq_n_s64(u.v128[0], 9)}; break;
case 10: return {vshrq_n_s64(u.v128[0], 10)}; break;
case 11: return {vshrq_n_s64(u.v128[0], 11)}; break;
case 12: return {vshrq_n_s64(u.v128[0], 12)}; break;
case 13: return {vshrq_n_s64(u.v128[0], 13)}; break;
case 14: return {vshrq_n_s64(u.v128[0], 14)}; break;
case 15: return {vshrq_n_s64(u.v128[0], 15)}; break;
case 16: return Zeroes();
default: break;
}
return *this;
}
#endif
template<>
really_inline SuperVector<16> SuperVector<16>::lshift128(uint8_t const N)
{
return *this << N;
}
template<>
really_inline SuperVector<16> SuperVector<16>::rshift128(uint8_t const N)
{
return *this >> N;
}

View File

@ -0,0 +1,37 @@
/*
* Copyright (c) 2015-2017, Intel Corporation
* Copyright (c) 2020-2021, VectorCamp PC
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SIMD_TYPES_ARM_H
#define SIMD_TYPES_ARM_H
#if !defined(m128) && defined(HAVE_VSX)
typedef __vector int32_t m128;
#endif
#endif /* SIMD_TYPES_ARM_H */