added Math.sumPrecise()

This commit is contained in:
Fabrice Bellard
2025-09-27 18:44:19 +02:00
parent 456e016f7c
commit bc753c6a15
4 changed files with 260 additions and 2 deletions

2
TODO
View File

@@ -62,5 +62,5 @@ Optimization ideas:
Test262o: 0/11262 errors, 463 excluded Test262o: 0/11262 errors, 463 excluded
Test262o commit: 7da91bceb9ce7613f87db47ddd1292a2dda58b42 (es5-tests branch) Test262o commit: 7da91bceb9ce7613f87db47ddd1292a2dda58b42 (es5-tests branch)
Result: 48/81914 errors, 1631 excluded, 5486 skipped Result: 48/81934 errors, 1631 excluded, 5476 skipped
Test262 commit: e7e136756cd67c1ffcf7c09d03aeb8ad5a6cec0c Test262 commit: e7e136756cd67c1ffcf7c09d03aeb8ad5a6cec0c

257
quickjs.c
View File

@@ -45458,6 +45458,262 @@ static JSValue js_math_clz32(JSContext *ctx, JSValueConst this_val,
return JS_NewInt32(ctx, r); return JS_NewInt32(ctx, r);
} }
/* we add one extra limb to avoid having to test for overflows during the sum */
#define SUM_PRECISE_ACC_LEN 34
typedef enum {
SUM_PRECISE_STATE_MINUS_ZERO,
SUM_PRECISE_STATE_FINITE,
SUM_PRECISE_STATE_INFINITY,
SUM_PRECISE_STATE_MINUS_INFINITY, /* must be after SUM_PRECISE_STATE_INFINITY */
SUM_PRECISE_STATE_NAN, /* must be after SUM_PRECISE_STATE_MINUS_INFINITY */
} SumPreciseStateEnum;
typedef struct {
uint64_t acc[SUM_PRECISE_ACC_LEN];
int n_limbs; /* acc is not necessarily normalized */
SumPreciseStateEnum state;
} SumPreciseState;
static void sum_precise_init(SumPreciseState *s)
{
s->state = SUM_PRECISE_STATE_MINUS_ZERO;
s->acc[0] = 0;
s->n_limbs = 1;
}
#define ADDC64(res, carry_out, op1, op2, carry_in) \
do { \
uint64_t __v, __a, __k, __k1; \
__v = (op1); \
__a = __v + (op2); \
__k1 = __a < __v; \
__k = (carry_in); \
__a = __a + __k; \
carry_out = (__a < __k) | __k1; \
res = __a; \
} while (0)
static void sum_precise_add(SumPreciseState *s, double d)
{
uint64_t a, m, a0, carry, acc_sign, a_sign;
int sgn, e, p, n, i;
unsigned shift;
a = float64_as_uint64(d);
sgn = a >> 63;
e = (a >> 52) & ((1 << 11) - 1);
m = a & (((uint64_t)1 << 52) - 1);
if (unlikely(e == 2047)) {
if (m == 0) {
/* +/- infinity */
if (s->state == SUM_PRECISE_STATE_NAN ||
(s->state == SUM_PRECISE_STATE_MINUS_INFINITY && !sgn) ||
(s->state == SUM_PRECISE_STATE_INFINITY && sgn)) {
s->state = SUM_PRECISE_STATE_NAN;
} else {
s->state = SUM_PRECISE_STATE_INFINITY + sgn;
}
} else {
/* NaN */
s->state = SUM_PRECISE_STATE_NAN;
}
} else if (e == 0) {
if (likely(m == 0)) {
/* zero */
if (s->state == SUM_PRECISE_STATE_MINUS_ZERO && !sgn)
s->state = SUM_PRECISE_STATE_FINITE;
} else {
/* subnormal */
p = 0;
shift = 0;
goto add;
}
} else {
m |= (uint64_t)1 << 52;
shift = e - 1;
p = shift / 64;
/* 'p' is the position of a0 in acc */
shift %= 64;
add:
if (s->state >= SUM_PRECISE_STATE_INFINITY)
return;
s->state = SUM_PRECISE_STATE_FINITE;
n = s->n_limbs;
acc_sign = (int64_t)s->acc[n - 1] >> 63;
/* sign extend acc */
for(i = n; i <= p; i++)
s->acc[i] = acc_sign;
carry = sgn;
a_sign = -sgn;
a0 = m << shift;
ADDC64(s->acc[p], carry, s->acc[p], a0 ^ a_sign, carry);
if (shift >= 12) {
p++;
if (p >= n)
s->acc[p] = acc_sign;
a0 = m >> (64 - shift);
ADDC64(s->acc[p], carry, s->acc[p], a0 ^ a_sign, carry);
}
p++;
if (p >= n) {
n = p;
} else {
/* carry */
for(i = p; i < n; i++) {
/* if 'a' positive: stop condition: carry = 0.
if 'a' negative: stop condition: carry = 1. */
if (carry == sgn)
goto done;
ADDC64(s->acc[i], carry, s->acc[i], a_sign, carry);
}
}
/* extend the accumulator if needed */
a0 = carry + acc_sign + a_sign;
/* -1 <= a0 <= 1 (if both acc and a are negative, carry is set) */
if (a0 != ((int64_t)s->acc[n - 1] >> 63)) {
s->acc[n++] = a0;
}
done:
s->n_limbs = n;
}
}
static double sum_precise_get_result(SumPreciseState *s)
{
int n, shift, e, p, is_neg, i;
uint64_t m, addend, carry;
if (s->state != SUM_PRECISE_STATE_FINITE) {
switch(s->state) {
default:
case SUM_PRECISE_STATE_MINUS_ZERO:
return -0.0;
case SUM_PRECISE_STATE_INFINITY:
return INFINITY;
case SUM_PRECISE_STATE_MINUS_INFINITY:
return -INFINITY;
case SUM_PRECISE_STATE_NAN:
return NAN;
}
}
/* extract the sign and absolute value */
n = s->n_limbs;
is_neg = s->acc[n - 1] >> 63;
if (is_neg) {
/* acc = -acc */
carry = 1;
for(i = 0; i < n; i++) {
ADDC64(s->acc[i], carry, ~s->acc[i], 0, carry);
}
}
/* normalize */
while (n > 0 && s->acc[n - 1] == 0)
n--;
#if 0
{
printf("res=");
for(i = n - 1; i >= 0; i--)
printf(" %016lx", s->acc[i]);
printf("\n");
}
#endif
/* zero result. The spec tells it is always positive in the finite case */
if (n == 0)
return 0.0;
/* subnormal case */
if (n == 1 && s->acc[0] < ((uint64_t)1 << 52))
return uint64_as_float64(((uint64_t)is_neg << 63) | s->acc[0]);
/* normal case */
e = n * 64;
p = n - 1;
m = s->acc[p];
shift = clz64(m);
e = e - shift - 52;
if (shift != 0) {
m <<= shift;
if (p > 0) {
int shift1;
uint64_t nz;
p--;
shift1 = 64 - shift;
nz = s->acc[p] & (((uint64_t)1 << shift1) - 1);
m = m | (s->acc[p] >> shift1) | (nz != 0);
}
}
if ((m & ((1 << 10) - 1)) == 0) {
/* see if the LSB part is non zero for the final rounding */
while (p > 0) {
p--;
if (s->acc[p] != 0) {
m |= 1;
break;
}
}
}
/* rounding to nearest with ties to even */
addend = (1 << 10) - 1 + ((m >> 11) & 1);
m = (m + addend) >> 11;
/* handle overflow in the rounding */
if (m == 0)
e++;
if (unlikely(e >= 2047)) {
/* infinity */
return uint64_as_float64(((uint64_t)is_neg << 63) | ((uint64_t)2047 << 52));
} else {
m &= (((uint64_t)1 << 52) - 1);
return uint64_as_float64(((uint64_t)is_neg << 63) | ((uint64_t)e << 52) | m);
}
}
static JSValue js_math_sumPrecise(JSContext *ctx, JSValueConst this_val,
int argc, JSValueConst *argv)
{
JSValue iter, next, item, ret;
uint32_t tag;
int done;
double d;
SumPreciseState s_s, *s = &s_s;
iter = JS_GetIterator(ctx, argv[0], FALSE);
if (JS_IsException(iter))
return JS_EXCEPTION;
ret = JS_EXCEPTION;
next = JS_GetProperty(ctx, iter, JS_ATOM_next);
if (JS_IsException(next))
goto fail;
sum_precise_init(s);
for (;;) {
item = JS_IteratorNext(ctx, iter, next, 0, NULL, &done);
if (JS_IsException(item))
goto fail;
if (done)
break;
tag = JS_VALUE_GET_TAG(item);
if (JS_TAG_IS_FLOAT64(tag)) {
d = JS_VALUE_GET_FLOAT64(item);
} else if (tag == JS_TAG_INT) {
d = JS_VALUE_GET_INT(item);
} else {
JS_FreeValue(ctx, item);
JS_ThrowTypeError(ctx, "not a number");
JS_IteratorClose(ctx, iter, TRUE);
goto fail;
}
sum_precise_add(s, d);
}
ret = __JS_NewFloat64(ctx, sum_precise_get_result(s));
fail:
JS_FreeValue(ctx, iter);
JS_FreeValue(ctx, next);
return ret;
}
/* xorshift* random number generator by Marsaglia */ /* xorshift* random number generator by Marsaglia */
static uint64_t xorshift64star(uint64_t *pstate) static uint64_t xorshift64star(uint64_t *pstate)
{ {
@@ -45531,6 +45787,7 @@ static const JSCFunctionListEntry js_math_funcs[] = {
JS_CFUNC_SPECIAL_DEF("fround", 1, f_f, js_math_fround ), JS_CFUNC_SPECIAL_DEF("fround", 1, f_f, js_math_fround ),
JS_CFUNC_DEF("imul", 2, js_math_imul ), JS_CFUNC_DEF("imul", 2, js_math_imul ),
JS_CFUNC_DEF("clz32", 1, js_math_clz32 ), JS_CFUNC_DEF("clz32", 1, js_math_clz32 ),
JS_CFUNC_DEF("sumPrecise", 1, js_math_sumPrecise ),
JS_PROP_STRING_DEF("[Symbol.toStringTag]", "Math", JS_PROP_CONFIGURABLE ), JS_PROP_STRING_DEF("[Symbol.toStringTag]", "Math", JS_PROP_CONFIGURABLE ),
JS_PROP_DOUBLE_DEF("E", 2.718281828459045, 0 ), JS_PROP_DOUBLE_DEF("E", 2.718281828459045, 0 ),
JS_PROP_DOUBLE_DEF("LN10", 2.302585092994046, 0 ), JS_PROP_DOUBLE_DEF("LN10", 2.302585092994046, 0 ),

View File

@@ -149,7 +149,7 @@ legacy-regexp=skip
let let
logical-assignment-operators logical-assignment-operators
Map Map
Math.sumPrecise=skip Math.sumPrecise
new.target new.target
numeric-separator-literal numeric-separator-literal
object-rest object-rest

View File

@@ -357,6 +357,7 @@ function test_math()
assert(Math.hypot(-2), 2); assert(Math.hypot(-2), 2);
assert(Math.hypot(3, 4), 5); assert(Math.hypot(3, 4), 5);
assert(Math.abs(Math.hypot(3, 4, 5) - 7.0710678118654755) <= 1e-15); assert(Math.abs(Math.hypot(3, 4, 5) - 7.0710678118654755) <= 1e-15);
assert(Math.sumPrecise([1,Number.EPSILON/2,Number.MIN_VALUE]), 1.0000000000000002);
} }
function test_number() function test_number()