mirror of
https://github.com/bellard/quickjs.git
synced 2025-09-30 15:04:24 +03:00
removed bignum support and qjscalc - added optimized BigInt implementation
This commit is contained in:
@@ -687,29 +687,6 @@ function float_arith(n)
|
||||
return n * 1000;
|
||||
}
|
||||
|
||||
function bigfloat_arith(n)
|
||||
{
|
||||
var i, j, sum, a, incr, a0;
|
||||
global_res = 0;
|
||||
a0 = BigFloat("0.1");
|
||||
incr = BigFloat("1.1");
|
||||
for(j = 0; j < n; j++) {
|
||||
sum = 0;
|
||||
a = a0;
|
||||
for(i = 0; i < 1000; i++) {
|
||||
sum += a * a;
|
||||
a += incr;
|
||||
}
|
||||
global_res += sum;
|
||||
}
|
||||
return n * 1000;
|
||||
}
|
||||
|
||||
function float256_arith(n)
|
||||
{
|
||||
return BigFloatEnv.setPrec(bigfloat_arith.bind(null, n), 237, 19);
|
||||
}
|
||||
|
||||
function bigint_arith(n, bits)
|
||||
{
|
||||
var i, j, sum, a, incr, a0, sum0;
|
||||
@@ -728,6 +705,11 @@ function bigint_arith(n, bits)
|
||||
return n * 1000;
|
||||
}
|
||||
|
||||
function bigint32_arith(n)
|
||||
{
|
||||
return bigint_arith(n, 32);
|
||||
}
|
||||
|
||||
function bigint64_arith(n)
|
||||
{
|
||||
return bigint_arith(n, 64);
|
||||
@@ -1231,13 +1213,10 @@ function main(argc, argv, g)
|
||||
|
||||
if (typeof BigInt === "function") {
|
||||
/* BigInt test */
|
||||
test_list.push(bigint32_arith);
|
||||
test_list.push(bigint64_arith);
|
||||
test_list.push(bigint256_arith);
|
||||
}
|
||||
if (typeof BigFloat === "function") {
|
||||
/* BigFloat test */
|
||||
test_list.push(float256_arith);
|
||||
}
|
||||
test_list.push(sort_bench);
|
||||
|
||||
for (i = 1; i < argc;) {
|
||||
|
@@ -1,279 +0,0 @@
|
||||
"use strict";
|
||||
|
||||
function assert(actual, expected, message) {
|
||||
if (arguments.length == 1)
|
||||
expected = true;
|
||||
|
||||
if (actual === expected)
|
||||
return;
|
||||
|
||||
if (actual !== null && expected !== null
|
||||
&& typeof actual == 'object' && typeof expected == 'object'
|
||||
&& actual.toString() === expected.toString())
|
||||
return;
|
||||
|
||||
throw Error("assertion failed: got |" + actual + "|" +
|
||||
", expected |" + expected + "|" +
|
||||
(message ? " (" + message + ")" : ""));
|
||||
}
|
||||
|
||||
function assertThrows(err, func)
|
||||
{
|
||||
var ex;
|
||||
ex = false;
|
||||
try {
|
||||
func();
|
||||
} catch(e) {
|
||||
ex = true;
|
||||
assert(e instanceof err);
|
||||
}
|
||||
assert(ex, true, "exception expected");
|
||||
}
|
||||
|
||||
// load more elaborate version of assert if available
|
||||
try { __loadScript("test_assert.js"); } catch(e) {}
|
||||
|
||||
/*----------------*/
|
||||
|
||||
/* a must be < b */
|
||||
function test_less(a, b)
|
||||
{
|
||||
assert(a < b);
|
||||
assert(!(b < a));
|
||||
assert(a <= b);
|
||||
assert(!(b <= a));
|
||||
assert(b > a);
|
||||
assert(!(a > b));
|
||||
assert(b >= a);
|
||||
assert(!(a >= b));
|
||||
assert(a != b);
|
||||
assert(!(a == b));
|
||||
}
|
||||
|
||||
/* a must be numerically equal to b */
|
||||
function test_eq(a, b)
|
||||
{
|
||||
assert(a == b);
|
||||
assert(b == a);
|
||||
assert(!(a != b));
|
||||
assert(!(b != a));
|
||||
assert(a <= b);
|
||||
assert(b <= a);
|
||||
assert(!(a < b));
|
||||
assert(a >= b);
|
||||
assert(b >= a);
|
||||
assert(!(a > b));
|
||||
}
|
||||
|
||||
function test_divrem(div1, a, b, q)
|
||||
{
|
||||
var div, divrem, t;
|
||||
div = BigInt[div1];
|
||||
divrem = BigInt[div1 + "rem"];
|
||||
assert(div(a, b) == q);
|
||||
t = divrem(a, b);
|
||||
assert(t[0] == q);
|
||||
assert(a == b * q + t[1]);
|
||||
}
|
||||
|
||||
function test_idiv1(div, a, b, r)
|
||||
{
|
||||
test_divrem(div, a, b, r[0]);
|
||||
test_divrem(div, -a, b, r[1]);
|
||||
test_divrem(div, a, -b, r[2]);
|
||||
test_divrem(div, -a, -b, r[3]);
|
||||
}
|
||||
|
||||
/* QuickJS BigInt extensions */
|
||||
function test_bigint_ext()
|
||||
{
|
||||
var r;
|
||||
assert(BigInt.floorLog2(0n) === -1n);
|
||||
assert(BigInt.floorLog2(7n) === 2n);
|
||||
|
||||
assert(BigInt.sqrt(0xffffffc000000000000000n) === 17592185913343n);
|
||||
r = BigInt.sqrtrem(0xffffffc000000000000000n);
|
||||
assert(r[0] === 17592185913343n);
|
||||
assert(r[1] === 35167191957503n);
|
||||
|
||||
test_idiv1("tdiv", 3n, 2n, [1n, -1n, -1n, 1n]);
|
||||
test_idiv1("fdiv", 3n, 2n, [1n, -2n, -2n, 1n]);
|
||||
test_idiv1("cdiv", 3n, 2n, [2n, -1n, -1n, 2n]);
|
||||
test_idiv1("ediv", 3n, 2n, [1n, -2n, -1n, 2n]);
|
||||
}
|
||||
|
||||
function test_bigfloat()
|
||||
{
|
||||
var e, a, b, sqrt2;
|
||||
|
||||
assert(typeof 1n === "bigint");
|
||||
assert(typeof 1l === "bigfloat");
|
||||
assert(1 == 1.0l);
|
||||
assert(1 !== 1.0l);
|
||||
|
||||
test_less(2l, 3l);
|
||||
test_eq(3l, 3l);
|
||||
|
||||
test_less(2, 3l);
|
||||
test_eq(3, 3l);
|
||||
|
||||
test_less(2.1, 3l);
|
||||
test_eq(Math.sqrt(9), 3l);
|
||||
|
||||
test_less(2n, 3l);
|
||||
test_eq(3n, 3l);
|
||||
|
||||
e = new BigFloatEnv(128);
|
||||
assert(e.prec == 128);
|
||||
a = BigFloat.sqrt(2l, e);
|
||||
assert(a === BigFloat.parseFloat("0x1.6a09e667f3bcc908b2fb1366ea957d3e", 0, e));
|
||||
assert(e.inexact === true);
|
||||
assert(BigFloat.fpRound(a) == 0x1.6a09e667f3bcc908b2fb1366ea95l);
|
||||
|
||||
b = BigFloatEnv.setPrec(BigFloat.sqrt.bind(null, 2), 128);
|
||||
assert(a === b);
|
||||
|
||||
assert(BigFloat.isNaN(BigFloat(NaN)));
|
||||
assert(BigFloat.isFinite(1l));
|
||||
assert(!BigFloat.isFinite(1l/0l));
|
||||
|
||||
assert(BigFloat.abs(-3l) === 3l);
|
||||
assert(BigFloat.sign(-3l) === -1l);
|
||||
|
||||
assert(BigFloat.exp(0.2l) === 1.2214027581601698339210719946396742l);
|
||||
assert(BigFloat.log(3l) === 1.0986122886681096913952452369225256l);
|
||||
assert(BigFloat.pow(2.1l, 1.6l) === 3.277561666451861947162828744873745l);
|
||||
|
||||
assert(BigFloat.sin(-1l) === -0.841470984807896506652502321630299l);
|
||||
assert(BigFloat.cos(1l) === 0.5403023058681397174009366074429766l);
|
||||
assert(BigFloat.tan(0.1l) === 0.10033467208545054505808004578111154l);
|
||||
|
||||
assert(BigFloat.asin(0.3l) === 0.30469265401539750797200296122752915l);
|
||||
assert(BigFloat.acos(0.4l) === 1.1592794807274085998465837940224159l);
|
||||
assert(BigFloat.atan(0.7l) === 0.610725964389208616543758876490236l);
|
||||
assert(BigFloat.atan2(7.1l, -5.1l) === 2.1937053809751415549388104628759813l);
|
||||
|
||||
assert(BigFloat.floor(2.5l) === 2l);
|
||||
assert(BigFloat.ceil(2.5l) === 3l);
|
||||
assert(BigFloat.trunc(-2.5l) === -2l);
|
||||
assert(BigFloat.round(2.5l) === 3l);
|
||||
|
||||
assert(BigFloat.fmod(3l,2l) === 1l);
|
||||
assert(BigFloat.remainder(3l,2l) === -1l);
|
||||
|
||||
/* string conversion */
|
||||
assert((1234.125l).toString(), "1234.125");
|
||||
assert((1234.125l).toFixed(2), "1234.13");
|
||||
assert((1234.125l).toFixed(2, "down"), "1234.12");
|
||||
assert((1234.125l).toExponential(), "1.234125e+3");
|
||||
assert((1234.125l).toExponential(5), "1.23413e+3");
|
||||
assert((1234.125l).toExponential(5, BigFloatEnv.RNDZ), "1.23412e+3");
|
||||
assert((1234.125l).toPrecision(6), "1234.13");
|
||||
assert((1234.125l).toPrecision(6, BigFloatEnv.RNDZ), "1234.12");
|
||||
|
||||
/* string conversion with binary base */
|
||||
assert((0x123.438l).toString(16), "123.438");
|
||||
assert((0x323.438l).toString(16), "323.438");
|
||||
assert((0x723.438l).toString(16), "723.438");
|
||||
assert((0xf23.438l).toString(16), "f23.438");
|
||||
assert((0x123.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "123.44");
|
||||
assert((0x323.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "323.44");
|
||||
assert((0x723.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "723.44");
|
||||
assert((0xf23.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "f23.44");
|
||||
assert((0x0.0000438l).toFixed(6, BigFloatEnv.RNDNA, 16), "0.000044");
|
||||
assert((0x1230000000l).toFixed(1, BigFloatEnv.RNDNA, 16), "1230000000.0");
|
||||
assert((0x123.438l).toPrecision(5, BigFloatEnv.RNDNA, 16), "123.44");
|
||||
assert((0x123.438l).toPrecision(5, BigFloatEnv.RNDZ, 16), "123.43");
|
||||
assert((0x323.438l).toPrecision(5, BigFloatEnv.RNDNA, 16), "323.44");
|
||||
assert((0x723.438l).toPrecision(5, BigFloatEnv.RNDNA, 16), "723.44");
|
||||
assert((-0xf23.438l).toPrecision(5, BigFloatEnv.RNDD, 16), "-f23.44");
|
||||
assert((0x123.438l).toExponential(4, BigFloatEnv.RNDNA, 16), "1.2344p+8");
|
||||
}
|
||||
|
||||
function test_bigdecimal()
|
||||
{
|
||||
assert(1m === 1m);
|
||||
assert(1m !== 2m);
|
||||
test_less(1m, 2m);
|
||||
test_eq(2m, 2m);
|
||||
|
||||
test_less(1, 2m);
|
||||
test_eq(2, 2m);
|
||||
|
||||
test_less(1.1, 2m);
|
||||
test_eq(Math.sqrt(4), 2m);
|
||||
|
||||
test_less(2n, 3m);
|
||||
test_eq(3n, 3m);
|
||||
|
||||
assert(BigDecimal("1234.1") === 1234.1m);
|
||||
assert(BigDecimal(" 1234.1") === 1234.1m);
|
||||
assert(BigDecimal(" 1234.1 ") === 1234.1m);
|
||||
|
||||
assert(BigDecimal(0.1) === 0.1m);
|
||||
assert(BigDecimal(123) === 123m);
|
||||
assert(BigDecimal(true) === 1m);
|
||||
|
||||
assert(123m + 1m === 124m);
|
||||
assert(123m - 1m === 122m);
|
||||
|
||||
assert(3.2m * 3m === 9.6m);
|
||||
assert(10m / 2m === 5m);
|
||||
assertThrows(RangeError, () => { 10m / 3m } );
|
||||
|
||||
assert(10m % 3m === 1m);
|
||||
assert(-10m % 3m === -1m);
|
||||
|
||||
assert(1234.5m ** 3m === 1881365963.625m);
|
||||
assertThrows(RangeError, () => { 2m ** 3.1m } );
|
||||
assertThrows(RangeError, () => { 2m ** -3m } );
|
||||
|
||||
assert(BigDecimal.sqrt(2m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumSignificantDigits: 4 }) === 1.414m);
|
||||
assert(BigDecimal.sqrt(101m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumFractionDigits: 3 }) === 10.050m);
|
||||
assert(BigDecimal.sqrt(0.002m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumFractionDigits: 3 }) === 0.045m);
|
||||
|
||||
assert(BigDecimal.round(3.14159m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumFractionDigits: 3 }) === 3.142m);
|
||||
|
||||
assert(BigDecimal.add(3.14159m, 0.31212m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumFractionDigits: 2 }) === 3.45m);
|
||||
assert(BigDecimal.sub(3.14159m, 0.31212m,
|
||||
{ roundingMode: "down",
|
||||
maximumFractionDigits: 2 }) === 2.82m);
|
||||
assert(BigDecimal.mul(3.14159m, 0.31212m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumFractionDigits: 3 }) === 0.981m);
|
||||
assert(BigDecimal.mod(3.14159m, 0.31211m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumFractionDigits: 4 }) === 0.0205m);
|
||||
assert(BigDecimal.div(20m, 3m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumSignificantDigits: 3 }) === 6.67m);
|
||||
assert(BigDecimal.div(20m, 3m,
|
||||
{ roundingMode: "half-even",
|
||||
maximumFractionDigits: 50 }) ===
|
||||
6.66666666666666666666666666666666666666666666666667m);
|
||||
|
||||
/* string conversion */
|
||||
assert((1234.125m).toString(), "1234.125");
|
||||
assert((1234.125m).toFixed(2), "1234.13");
|
||||
assert((1234.125m).toFixed(2, "down"), "1234.12");
|
||||
assert((1234.125m).toExponential(), "1.234125e+3");
|
||||
assert((1234.125m).toExponential(5), "1.23413e+3");
|
||||
assert((1234.125m).toExponential(5, "down"), "1.23412e+3");
|
||||
assert((1234.125m).toPrecision(6), "1234.13");
|
||||
assert((1234.125m).toPrecision(6, "down"), "1234.12");
|
||||
assert((-1234.125m).toPrecision(6, "floor"), "-1234.13");
|
||||
}
|
||||
|
||||
test_bigint_ext();
|
||||
test_bigfloat();
|
||||
test_bigdecimal();
|
249
tests/test_bigint.js
Normal file
249
tests/test_bigint.js
Normal file
@@ -0,0 +1,249 @@
|
||||
"use strict";
|
||||
|
||||
function assert(actual, expected, message) {
|
||||
if (arguments.length == 1)
|
||||
expected = true;
|
||||
|
||||
if (actual === expected)
|
||||
return;
|
||||
|
||||
if (actual !== null && expected !== null
|
||||
&& typeof actual == 'object' && typeof expected == 'object'
|
||||
&& actual.toString() === expected.toString())
|
||||
return;
|
||||
|
||||
throw Error("assertion failed: got |" + actual + "|" +
|
||||
", expected |" + expected + "|" +
|
||||
(message ? " (" + message + ")" : ""));
|
||||
}
|
||||
|
||||
function assertThrows(err, func)
|
||||
{
|
||||
var ex;
|
||||
ex = false;
|
||||
try {
|
||||
func();
|
||||
} catch(e) {
|
||||
ex = true;
|
||||
assert(e instanceof err);
|
||||
}
|
||||
assert(ex, true, "exception expected");
|
||||
}
|
||||
|
||||
// load more elaborate version of assert if available
|
||||
try { __loadScript("test_assert.js"); } catch(e) {}
|
||||
|
||||
/*----------------*/
|
||||
|
||||
function bigint_pow(a, n)
|
||||
{
|
||||
var r, i;
|
||||
r = 1n;
|
||||
for(i = 0n; i < n; i++)
|
||||
r *= a;
|
||||
return r;
|
||||
}
|
||||
|
||||
/* a must be < b */
|
||||
function test_less(a, b)
|
||||
{
|
||||
assert(a < b);
|
||||
assert(!(b < a));
|
||||
assert(a <= b);
|
||||
assert(!(b <= a));
|
||||
assert(b > a);
|
||||
assert(!(a > b));
|
||||
assert(b >= a);
|
||||
assert(!(a >= b));
|
||||
assert(a != b);
|
||||
assert(!(a == b));
|
||||
}
|
||||
|
||||
/* a must be numerically equal to b */
|
||||
function test_eq(a, b)
|
||||
{
|
||||
assert(a == b);
|
||||
assert(b == a);
|
||||
assert(!(a != b));
|
||||
assert(!(b != a));
|
||||
assert(a <= b);
|
||||
assert(b <= a);
|
||||
assert(!(a < b));
|
||||
assert(a >= b);
|
||||
assert(b >= a);
|
||||
assert(!(a > b));
|
||||
}
|
||||
|
||||
function test_bigint1()
|
||||
{
|
||||
var a, r;
|
||||
|
||||
test_less(2n, 3n);
|
||||
test_eq(3n, 3n);
|
||||
|
||||
test_less(2, 3n);
|
||||
test_eq(3, 3n);
|
||||
|
||||
test_less(2.1, 3n);
|
||||
test_eq(Math.sqrt(4), 2n);
|
||||
|
||||
a = bigint_pow(3n, 100n);
|
||||
assert((a - 1n) != a);
|
||||
assert(a == 515377520732011331036461129765621272702107522001n);
|
||||
assert(a == 0x5a4653ca673768565b41f775d6947d55cf3813d1n);
|
||||
|
||||
r = 1n << 31n;
|
||||
assert(r, 2147483648n, "1 << 31n === 2147483648n");
|
||||
|
||||
r = 1n << 32n;
|
||||
assert(r, 4294967296n, "1 << 32n === 4294967296n");
|
||||
}
|
||||
|
||||
function test_bigint2()
|
||||
{
|
||||
assert(BigInt(""), 0n);
|
||||
assert(BigInt(" 123"), 123n);
|
||||
assert(BigInt(" 123 "), 123n);
|
||||
assertThrows(SyntaxError, () => { BigInt("+") } );
|
||||
assertThrows(SyntaxError, () => { BigInt("-") } );
|
||||
assertThrows(SyntaxError, () => { BigInt("\x00a") } );
|
||||
assertThrows(SyntaxError, () => { BigInt(" 123 r") } );
|
||||
}
|
||||
|
||||
function test_bigint3()
|
||||
{
|
||||
assert(Number(0xffffffffffffffffn), 18446744073709552000);
|
||||
assert(Number(-0xffffffffffffffffn), -18446744073709552000);
|
||||
assert(100000000000000000000n == 1e20, true);
|
||||
assert(100000000000000000001n == 1e20, false);
|
||||
assert((1n << 100n).toString(10), "1267650600228229401496703205376");
|
||||
assert((-1n << 100n).toString(36), "-3ewfdnca0n6ld1ggvfgg");
|
||||
assert((1n << 100n).toString(8), "2000000000000000000000000000000000");
|
||||
|
||||
assert(0x5a4653ca673768565b41f775n << 78n, 8443945299673273647701379149826607537748959488376832n);
|
||||
assert(-0x5a4653ca673768565b41f775n << 78n, -8443945299673273647701379149826607537748959488376832n);
|
||||
assert(0x5a4653ca673768565b41f775n >> 78n, 92441n);
|
||||
assert(-0x5a4653ca673768565b41f775n >> 78n, -92442n);
|
||||
|
||||
assert(~0x5a653ca6n, -1516584103n);
|
||||
assert(0x5a463ca6n | 0x67376856n, 2138537206n);
|
||||
assert(0x5a463ca6n & 0x67376856n, 1107699718n);
|
||||
assert(0x5a463ca6n ^ 0x67376856n, 1030837488n);
|
||||
|
||||
assert(3213213213213213432453243n / 123434343439n, 26031760073331n);
|
||||
assert(-3213213213213213432453243n / 123434343439n, -26031760073331n);
|
||||
assert(-3213213213213213432453243n % -123434343439n, -26953727934n);
|
||||
assert(3213213213213213432453243n % 123434343439n, 26953727934n);
|
||||
|
||||
assert((-2n) ** 127n, -170141183460469231731687303715884105728n);
|
||||
assert((2n) ** 127n, 170141183460469231731687303715884105728n);
|
||||
assert((-256n) ** 11n, -309485009821345068724781056n);
|
||||
assert((7n) ** 20n, 79792266297612001n);
|
||||
}
|
||||
|
||||
/* pi computation */
|
||||
|
||||
/* return floor(log2(a)) for a > 0 and 0 for a = 0 */
|
||||
function floor_log2(a)
|
||||
{
|
||||
var k_max, a1, k, i;
|
||||
k_max = 0n;
|
||||
while ((a >> (2n ** k_max)) != 0n) {
|
||||
k_max++;
|
||||
}
|
||||
k = 0n;
|
||||
a1 = a;
|
||||
for(i = k_max - 1n; i >= 0n; i--) {
|
||||
a1 = a >> (2n ** i);
|
||||
if (a1 != 0n) {
|
||||
a = a1;
|
||||
k |= (1n << i);
|
||||
}
|
||||
}
|
||||
return k;
|
||||
}
|
||||
|
||||
/* return ceil(log2(a)) for a > 0 */
|
||||
function ceil_log2(a)
|
||||
{
|
||||
return floor_log2(a - 1n) + 1n;
|
||||
}
|
||||
|
||||
/* return floor(sqrt(a)) (not efficient but simple) */
|
||||
function int_sqrt(a)
|
||||
{
|
||||
var l, u, s;
|
||||
if (a == 0n)
|
||||
return a;
|
||||
l = ceil_log2(a);
|
||||
u = 1n << ((l + 1n) / 2n);
|
||||
/* u >= floor(sqrt(a)) */
|
||||
for(;;) {
|
||||
s = u;
|
||||
u = ((a / s) + s) / 2n;
|
||||
if (u >= s)
|
||||
break;
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
/* return pi * 2**prec */
|
||||
function calc_pi(prec) {
|
||||
const CHUD_A = 13591409n;
|
||||
const CHUD_B = 545140134n;
|
||||
const CHUD_C = 640320n;
|
||||
const CHUD_C3 = 10939058860032000n; /* C^3/24 */
|
||||
const CHUD_BITS_PER_TERM = 47.11041313821584202247; /* log2(C/12)*3 */
|
||||
|
||||
/* return [P, Q, G] */
|
||||
function chud_bs(a, b, need_G) {
|
||||
var c, P, Q, G, P1, Q1, G1, P2, Q2, G2;
|
||||
if (a == (b - 1n)) {
|
||||
G = (2n * b - 1n) * (6n * b - 1n) * (6n * b - 5n);
|
||||
P = G * (CHUD_B * b + CHUD_A);
|
||||
if (b & 1n)
|
||||
P = -P;
|
||||
Q = b * b * b * CHUD_C3;
|
||||
} else {
|
||||
c = (a + b) >> 1n;
|
||||
[P1, Q1, G1] = chud_bs(a, c, true);
|
||||
[P2, Q2, G2] = chud_bs(c, b, need_G);
|
||||
P = P1 * Q2 + P2 * G1;
|
||||
Q = Q1 * Q2;
|
||||
if (need_G)
|
||||
G = G1 * G2;
|
||||
else
|
||||
G = 0n;
|
||||
}
|
||||
return [P, Q, G];
|
||||
}
|
||||
|
||||
var n, P, Q, G;
|
||||
/* number of serie terms */
|
||||
n = BigInt(Math.ceil(Number(prec) / CHUD_BITS_PER_TERM)) + 10n;
|
||||
[P, Q, G] = chud_bs(0n, n, false);
|
||||
Q = (CHUD_C / 12n) * (Q << prec) / (P + Q * CHUD_A);
|
||||
G = int_sqrt(CHUD_C << (2n * prec));
|
||||
return (Q * G) >> prec;
|
||||
}
|
||||
|
||||
function compute_pi(n_digits) {
|
||||
var r, n_digits, n_bits, out;
|
||||
/* we add more bits to reduce the probability of bad rounding for
|
||||
the last digits */
|
||||
n_bits = BigInt(Math.ceil(n_digits * Math.log2(10))) + 32n;
|
||||
r = calc_pi(n_bits);
|
||||
r = ((10n ** BigInt(n_digits)) * r) >> n_bits;
|
||||
out = r.toString();
|
||||
return out[0] + "." + out.slice(1);
|
||||
}
|
||||
|
||||
function test_pi()
|
||||
{
|
||||
assert(compute_pi(2000), "3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913151557485724245415069595082953311686172785588907509838175463746493931925506040092770167113900984882401285836160356370766010471018194295559619894676783744944825537977472684710404753464620804668425906949129331367702898915210475216205696602405803815019351125338243003558764024749647326391419927260426992279678235478163600934172164121992458631503028618297455570674983850549458858692699569092721079750930295532116534498720275596023648066549911988183479775356636980742654252786255181841757467289097777279380008164706001614524919217321721477235014144197356854816136115735255213347574184946843852332390739414333454776241686251898356948556209921922218427255025425688767179049460165346680498862723279178608578438382796797668145410095388378636095068006422512520511739298489608412848862694560424196528502221066118630674427862203919494504712371378696095636437191728746776465757396241389086583264599581339047802759009");
|
||||
}
|
||||
|
||||
test_bigint1();
|
||||
test_bigint2();
|
||||
test_bigint3();
|
||||
test_pi();
|
@@ -1,114 +0,0 @@
|
||||
"use strict";
|
||||
|
||||
function assert(actual, expected, message) {
|
||||
if (arguments.length == 1)
|
||||
expected = true;
|
||||
|
||||
if (actual === expected)
|
||||
return;
|
||||
|
||||
if (actual !== null && expected !== null
|
||||
&& typeof actual == 'object' && typeof expected == 'object'
|
||||
&& actual.toString() === expected.toString())
|
||||
return;
|
||||
|
||||
throw Error("assertion failed: got |" + actual + "|" +
|
||||
", expected |" + expected + "|" +
|
||||
(message ? " (" + message + ")" : ""));
|
||||
}
|
||||
|
||||
function assertThrows(err, func)
|
||||
{
|
||||
var ex;
|
||||
ex = false;
|
||||
try {
|
||||
func();
|
||||
} catch(e) {
|
||||
ex = true;
|
||||
assert(e instanceof err);
|
||||
}
|
||||
assert(ex, true, "exception expected");
|
||||
}
|
||||
|
||||
// load more elaborate version of assert if available
|
||||
try { __loadScript("test_assert.js"); } catch(e) {}
|
||||
|
||||
/*----------------*/
|
||||
|
||||
function bigint_pow(a, n)
|
||||
{
|
||||
var r, i;
|
||||
r = 1n;
|
||||
for(i = 0n; i < n; i++)
|
||||
r *= a;
|
||||
return r;
|
||||
}
|
||||
|
||||
/* a must be < b */
|
||||
function test_less(a, b)
|
||||
{
|
||||
assert(a < b);
|
||||
assert(!(b < a));
|
||||
assert(a <= b);
|
||||
assert(!(b <= a));
|
||||
assert(b > a);
|
||||
assert(!(a > b));
|
||||
assert(b >= a);
|
||||
assert(!(a >= b));
|
||||
assert(a != b);
|
||||
assert(!(a == b));
|
||||
}
|
||||
|
||||
/* a must be numerically equal to b */
|
||||
function test_eq(a, b)
|
||||
{
|
||||
assert(a == b);
|
||||
assert(b == a);
|
||||
assert(!(a != b));
|
||||
assert(!(b != a));
|
||||
assert(a <= b);
|
||||
assert(b <= a);
|
||||
assert(!(a < b));
|
||||
assert(a >= b);
|
||||
assert(b >= a);
|
||||
assert(!(a > b));
|
||||
}
|
||||
|
||||
function test_bigint1()
|
||||
{
|
||||
var a, r;
|
||||
|
||||
test_less(2n, 3n);
|
||||
test_eq(3n, 3n);
|
||||
|
||||
test_less(2, 3n);
|
||||
test_eq(3, 3n);
|
||||
|
||||
test_less(2.1, 3n);
|
||||
test_eq(Math.sqrt(4), 2n);
|
||||
|
||||
a = bigint_pow(3n, 100n);
|
||||
assert((a - 1n) != a);
|
||||
assert(a == 515377520732011331036461129765621272702107522001n);
|
||||
assert(a == 0x5a4653ca673768565b41f775d6947d55cf3813d1n);
|
||||
|
||||
r = 1n << 31n;
|
||||
assert(r, 2147483648n, "1 << 31n === 2147483648n");
|
||||
|
||||
r = 1n << 32n;
|
||||
assert(r, 4294967296n, "1 << 32n === 4294967296n");
|
||||
}
|
||||
|
||||
function test_bigint2()
|
||||
{
|
||||
assert(BigInt(""), 0n);
|
||||
assert(BigInt(" 123"), 123n);
|
||||
assert(BigInt(" 123 "), 123n);
|
||||
assertThrows(SyntaxError, () => { BigInt("+") } );
|
||||
assertThrows(SyntaxError, () => { BigInt("-") } );
|
||||
assertThrows(SyntaxError, () => { BigInt("\x00a") } );
|
||||
assertThrows(SyntaxError, () => { BigInt(" 123 r") } );
|
||||
}
|
||||
|
||||
test_bigint1();
|
||||
test_bigint2();
|
@@ -1,207 +0,0 @@
|
||||
"use strict";
|
||||
|
||||
function assert(actual, expected, message) {
|
||||
if (arguments.length == 1)
|
||||
expected = true;
|
||||
|
||||
if (actual === expected)
|
||||
return;
|
||||
|
||||
if (actual !== null && expected !== null
|
||||
&& typeof actual == 'object' && typeof expected == 'object'
|
||||
&& actual.toString() === expected.toString())
|
||||
return;
|
||||
|
||||
throw Error("assertion failed: got |" + actual + "|" +
|
||||
", expected |" + expected + "|" +
|
||||
(message ? " (" + message + ")" : ""));
|
||||
}
|
||||
|
||||
/* operators overloading with Operators.create() */
|
||||
function test_operators_create() {
|
||||
class Vec2
|
||||
{
|
||||
constructor(x, y) {
|
||||
this.x = x;
|
||||
this.y = y;
|
||||
}
|
||||
static mul_scalar(p1, a) {
|
||||
var r = new Vec2();
|
||||
r.x = p1.x * a;
|
||||
r.y = p1.y * a;
|
||||
return r;
|
||||
}
|
||||
toString() {
|
||||
return "Vec2(" + this.x + "," + this.y + ")";
|
||||
}
|
||||
}
|
||||
|
||||
Vec2.prototype[Symbol.operatorSet] = Operators.create(
|
||||
{
|
||||
"+"(p1, p2) {
|
||||
var r = new Vec2();
|
||||
r.x = p1.x + p2.x;
|
||||
r.y = p1.y + p2.y;
|
||||
return r;
|
||||
},
|
||||
"-"(p1, p2) {
|
||||
var r = new Vec2();
|
||||
r.x = p1.x - p2.x;
|
||||
r.y = p1.y - p2.y;
|
||||
return r;
|
||||
},
|
||||
"=="(a, b) {
|
||||
return a.x == b.x && a.y == b.y;
|
||||
},
|
||||
"<"(a, b) {
|
||||
var r;
|
||||
/* lexicographic order */
|
||||
if (a.x == b.x)
|
||||
r = (a.y < b.y);
|
||||
else
|
||||
r = (a.x < b.x);
|
||||
return r;
|
||||
},
|
||||
"++"(a) {
|
||||
var r = new Vec2();
|
||||
r.x = a.x + 1;
|
||||
r.y = a.y + 1;
|
||||
return r;
|
||||
}
|
||||
},
|
||||
{
|
||||
left: Number,
|
||||
"*"(a, b) {
|
||||
return Vec2.mul_scalar(b, a);
|
||||
}
|
||||
},
|
||||
{
|
||||
right: Number,
|
||||
"*"(a, b) {
|
||||
return Vec2.mul_scalar(a, b);
|
||||
}
|
||||
});
|
||||
|
||||
var a = new Vec2(1, 2);
|
||||
var b = new Vec2(3, 4);
|
||||
var r;
|
||||
|
||||
r = a * 2 + 3 * b;
|
||||
assert(r.x === 11 && r.y === 16);
|
||||
assert(a == a, true);
|
||||
assert(a == b, false);
|
||||
assert(a != a, false);
|
||||
assert(a < b, true);
|
||||
assert(a <= b, true);
|
||||
assert(b < a, false);
|
||||
assert(b <= a, false);
|
||||
assert(a <= a, true);
|
||||
assert(a >= a, true);
|
||||
a++;
|
||||
assert(a.x === 2 && a.y === 3);
|
||||
r = ++a;
|
||||
assert(a.x === 3 && a.y === 4);
|
||||
assert(r === a);
|
||||
}
|
||||
|
||||
/* operators overloading thru inheritance */
|
||||
function test_operators()
|
||||
{
|
||||
var Vec2;
|
||||
|
||||
function mul_scalar(p1, a) {
|
||||
var r = new Vec2();
|
||||
r.x = p1.x * a;
|
||||
r.y = p1.y * a;
|
||||
return r;
|
||||
}
|
||||
|
||||
var vec2_ops = Operators({
|
||||
"+"(p1, p2) {
|
||||
var r = new Vec2();
|
||||
r.x = p1.x + p2.x;
|
||||
r.y = p1.y + p2.y;
|
||||
return r;
|
||||
},
|
||||
"-"(p1, p2) {
|
||||
var r = new Vec2();
|
||||
r.x = p1.x - p2.x;
|
||||
r.y = p1.y - p2.y;
|
||||
return r;
|
||||
},
|
||||
"=="(a, b) {
|
||||
return a.x == b.x && a.y == b.y;
|
||||
},
|
||||
"<"(a, b) {
|
||||
var r;
|
||||
/* lexicographic order */
|
||||
if (a.x == b.x)
|
||||
r = (a.y < b.y);
|
||||
else
|
||||
r = (a.x < b.x);
|
||||
return r;
|
||||
},
|
||||
"++"(a) {
|
||||
var r = new Vec2();
|
||||
r.x = a.x + 1;
|
||||
r.y = a.y + 1;
|
||||
return r;
|
||||
}
|
||||
},
|
||||
{
|
||||
left: Number,
|
||||
"*"(a, b) {
|
||||
return mul_scalar(b, a);
|
||||
}
|
||||
},
|
||||
{
|
||||
right: Number,
|
||||
"*"(a, b) {
|
||||
return mul_scalar(a, b);
|
||||
}
|
||||
});
|
||||
|
||||
Vec2 = class Vec2 extends vec2_ops
|
||||
{
|
||||
constructor(x, y) {
|
||||
super();
|
||||
this.x = x;
|
||||
this.y = y;
|
||||
}
|
||||
toString() {
|
||||
return "Vec2(" + this.x + "," + this.y + ")";
|
||||
}
|
||||
}
|
||||
|
||||
var a = new Vec2(1, 2);
|
||||
var b = new Vec2(3, 4);
|
||||
var r;
|
||||
|
||||
r = a * 2 + 3 * b;
|
||||
assert(r.x === 11 && r.y === 16);
|
||||
assert(a == a, true);
|
||||
assert(a == b, false);
|
||||
assert(a != a, false);
|
||||
assert(a < b, true);
|
||||
assert(a <= b, true);
|
||||
assert(b < a, false);
|
||||
assert(b <= a, false);
|
||||
assert(a <= a, true);
|
||||
assert(a >= a, true);
|
||||
a++;
|
||||
assert(a.x === 2 && a.y === 3);
|
||||
r = ++a;
|
||||
assert(a.x === 3 && a.y === 4);
|
||||
assert(r === a);
|
||||
}
|
||||
|
||||
function test_default_op()
|
||||
{
|
||||
assert(Object(1) + 2, 3);
|
||||
assert(Object(1) + true, 2);
|
||||
assert(-Object(1), -1);
|
||||
}
|
||||
|
||||
test_operators_create();
|
||||
test_operators();
|
||||
test_default_op();
|
@@ -1,256 +0,0 @@
|
||||
"use math";
|
||||
"use strict";
|
||||
|
||||
function assert(actual, expected, message) {
|
||||
if (arguments.length == 1)
|
||||
expected = true;
|
||||
|
||||
if (actual === expected)
|
||||
return;
|
||||
|
||||
if (actual !== null && expected !== null
|
||||
&& typeof actual == 'object' && typeof expected == 'object'
|
||||
&& actual.toString() === expected.toString())
|
||||
return;
|
||||
|
||||
throw Error("assertion failed: got |" + actual + "|" +
|
||||
", expected |" + expected + "|" +
|
||||
(message ? " (" + message + ")" : ""));
|
||||
}
|
||||
|
||||
function assertThrows(err, func)
|
||||
{
|
||||
var ex;
|
||||
ex = false;
|
||||
try {
|
||||
func();
|
||||
} catch(e) {
|
||||
ex = true;
|
||||
assert(e instanceof err);
|
||||
}
|
||||
assert(ex, true, "exception expected");
|
||||
}
|
||||
|
||||
// load more elaborate version of assert if available
|
||||
try { __loadScript("test_assert.js"); } catch(e) {}
|
||||
|
||||
/*----------------*/
|
||||
|
||||
function pow(a, n)
|
||||
{
|
||||
var r, i;
|
||||
r = 1;
|
||||
for(i = 0; i < n; i++)
|
||||
r *= a;
|
||||
return r;
|
||||
}
|
||||
|
||||
function test_integer()
|
||||
{
|
||||
var a, r;
|
||||
a = pow(3, 100);
|
||||
assert((a - 1) != a);
|
||||
assert(a == 515377520732011331036461129765621272702107522001);
|
||||
assert(a == 0x5a4653ca673768565b41f775d6947d55cf3813d1);
|
||||
assert(Integer.isInteger(1) === true);
|
||||
assert(Integer.isInteger(1.0) === false);
|
||||
|
||||
assert(Integer.floorLog2(0) === -1);
|
||||
assert(Integer.floorLog2(7) === 2);
|
||||
|
||||
r = 1 << 31;
|
||||
assert(r, 2147483648, "1 << 31 === 2147483648");
|
||||
|
||||
r = 1 << 32;
|
||||
assert(r, 4294967296, "1 << 32 === 4294967296");
|
||||
|
||||
r = (1 << 31) < 0;
|
||||
assert(r, false, "(1 << 31) < 0 === false");
|
||||
|
||||
assert(typeof 1 === "number");
|
||||
assert(typeof 9007199254740991 === "number");
|
||||
assert(typeof 9007199254740992 === "bigint");
|
||||
}
|
||||
|
||||
function test_float()
|
||||
{
|
||||
assert(typeof 1.0 === "bigfloat");
|
||||
assert(1 == 1.0);
|
||||
assert(1 !== 1.0);
|
||||
}
|
||||
|
||||
/* jscalc tests */
|
||||
|
||||
function test_modulo()
|
||||
{
|
||||
var i, p, a, b;
|
||||
|
||||
/* Euclidian modulo operator */
|
||||
assert((-3) % 2 == 1);
|
||||
assert(3 % (-2) == 1);
|
||||
|
||||
p = 101;
|
||||
for(i = 1; i < p; i++) {
|
||||
a = Integer.invmod(i, p);
|
||||
assert(a >= 0 && a < p);
|
||||
assert((i * a) % p == 1);
|
||||
}
|
||||
|
||||
assert(Integer.isPrime(2^107-1));
|
||||
assert(!Integer.isPrime((2^107-1) * (2^89-1)));
|
||||
a = Integer.factor((2^89-1)*2^3*11*13^2*1009);
|
||||
assert(a == [ 2,2,2,11,13,13,1009,618970019642690137449562111 ]);
|
||||
}
|
||||
|
||||
function test_fraction()
|
||||
{
|
||||
assert((1/3 + 1).toString(), "4/3")
|
||||
assert((2/3)^30, 1073741824/205891132094649);
|
||||
assert(1/3 < 2/3);
|
||||
assert(1/3 < 1);
|
||||
assert(1/3 == 1.0/3);
|
||||
assert(1.0/3 < 2/3);
|
||||
}
|
||||
|
||||
function test_mod()
|
||||
{
|
||||
var a, b, p;
|
||||
|
||||
a = Mod(3, 101);
|
||||
b = Mod(-1, 101);
|
||||
assert((a + b) == Mod(2, 101));
|
||||
assert(a ^ 100 == Mod(1, 101));
|
||||
|
||||
p = 2 ^ 607 - 1; /* mersenne prime */
|
||||
a = Mod(3, p) ^ (p - 1);
|
||||
assert(a == Mod(1, p));
|
||||
}
|
||||
|
||||
function test_polynomial()
|
||||
{
|
||||
var a, b, q, r, t, i;
|
||||
a = (1 + X) ^ 4;
|
||||
assert(a == X^4+4*X^3+6*X^2+4*X+1);
|
||||
|
||||
r = (1 + X);
|
||||
q = (1+X+X^2);
|
||||
b = (1 - X^2);
|
||||
a = q * b + r;
|
||||
t = Polynomial.divrem(a, b);
|
||||
assert(t[0] == q);
|
||||
assert(t[1] == r);
|
||||
|
||||
a = 1 + 2*X + 3*X^2;
|
||||
assert(a.apply(0.1) == 1.23);
|
||||
|
||||
a = 1-2*X^2+2*X^3;
|
||||
assert(deriv(a) == (6*X^2-4*X));
|
||||
assert(deriv(integ(a)) == a);
|
||||
|
||||
a = (X-1)*(X-2)*(X-3)*(X-4)*(X-0.1);
|
||||
r = polroots(a);
|
||||
for(i = 0; i < r.length; i++) {
|
||||
b = abs(a.apply(r[i]));
|
||||
assert(b <= 1e-13);
|
||||
}
|
||||
}
|
||||
|
||||
function test_poly_mod()
|
||||
{
|
||||
var a, p;
|
||||
|
||||
/* modulo using polynomials */
|
||||
p = X^2 + X + 1;
|
||||
a = PolyMod(3+X, p) ^ 10;
|
||||
assert(a == PolyMod(-3725*X-18357, p));
|
||||
|
||||
a = PolyMod(1/X, 1+X^2);
|
||||
assert(a == PolyMod(-X, X^2+1));
|
||||
}
|
||||
|
||||
function test_rfunc()
|
||||
{
|
||||
var a;
|
||||
a = (X+1)/((X+1)*(X-1));
|
||||
assert(a == 1/(X-1));
|
||||
a = (X + 2) / (X - 2);
|
||||
assert(a.apply(1/3) == -7/5);
|
||||
|
||||
assert(deriv((X^2-X+1)/(X-1)) == (X^2-2*X)/(X^2-2*X+1));
|
||||
}
|
||||
|
||||
function test_series()
|
||||
{
|
||||
var a, b;
|
||||
a = 1+X+O(X^5);
|
||||
b = a.inverse();
|
||||
assert(b == 1-X+X^2-X^3+X^4+O(X^5));
|
||||
assert(deriv(b) == -1+2*X-3*X^2+4*X^3+O(X^4));
|
||||
assert(deriv(integ(b)) == b);
|
||||
|
||||
a = Series(1/(1-X), 5);
|
||||
assert(a == 1+X+X^2+X^3+X^4+O(X^5));
|
||||
b = a.apply(0.1);
|
||||
assert(b == 1.1111);
|
||||
|
||||
assert(exp(3*X^2+O(X^10)) == 1+3*X^2+9/2*X^4+9/2*X^6+27/8*X^8+O(X^10));
|
||||
assert(sin(X+O(X^6)) == X-1/6*X^3+1/120*X^5+O(X^6));
|
||||
assert(cos(X+O(X^6)) == 1-1/2*X^2+1/24*X^4+O(X^6));
|
||||
assert(tan(X+O(X^8)) == X+1/3*X^3+2/15*X^5+17/315*X^7+O(X^8));
|
||||
assert((1+X+O(X^6))^(2+X) == 1+2*X+2*X^2+3/2*X^3+5/6*X^4+5/12*X^5+O(X^6));
|
||||
}
|
||||
|
||||
function test_matrix()
|
||||
{
|
||||
var a, b, r;
|
||||
a = [[1, 2],[3, 4]];
|
||||
b = [3, 4];
|
||||
r = a * b;
|
||||
assert(r == [11, 25]);
|
||||
r = (a^-1) * 2;
|
||||
assert(r == [[-4, 2],[3, -1]]);
|
||||
|
||||
assert(norm2([1,2,3]) == 14);
|
||||
|
||||
assert(diag([1,2,3]) == [ [ 1, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 3 ] ]);
|
||||
assert(trans(a) == [ [ 1, 3 ], [ 2, 4 ] ]);
|
||||
assert(trans([1,2,3]) == [[1,2,3]]);
|
||||
assert(trace(a) == 5);
|
||||
|
||||
assert(charpoly(Matrix.hilbert(4)) == X^4-176/105*X^3+3341/12600*X^2-41/23625*X+1/6048000);
|
||||
assert(det(Matrix.hilbert(4)) == 1/6048000);
|
||||
|
||||
a = [[1,2,1],[-2,-3,1],[3,5,0]];
|
||||
assert(rank(a) == 2);
|
||||
assert(ker(a) == [ [ 5 ], [ -3 ], [ 1 ] ]);
|
||||
|
||||
assert(dp([1, 2, 3], [3, -4, -7]) === -26);
|
||||
assert(cp([1, 2, 3], [3, -4, -7]) == [ -2, 16, -10 ]);
|
||||
}
|
||||
|
||||
function assert_eq(a, ref)
|
||||
{
|
||||
assert(abs(a / ref - 1.0) <= 1e-15);
|
||||
}
|
||||
|
||||
function test_trig()
|
||||
{
|
||||
assert_eq(sin(1/2), 0.479425538604203);
|
||||
assert_eq(sin(2+3*I), 9.154499146911428-4.168906959966565*I);
|
||||
assert_eq(cos(2+3*I), -4.189625690968807-9.109227893755337*I);
|
||||
assert_eq((2+0.5*I)^(1.1-0.5*I), 2.494363021357619-0.23076804554558092*I);
|
||||
assert_eq(sqrt(2*I), 1 + I);
|
||||
}
|
||||
|
||||
test_integer();
|
||||
test_float();
|
||||
|
||||
test_modulo();
|
||||
test_fraction();
|
||||
test_mod();
|
||||
test_polynomial();
|
||||
test_poly_mod();
|
||||
test_rfunc();
|
||||
test_series();
|
||||
test_matrix();
|
||||
test_trig();
|
Reference in New Issue
Block a user