openappsec/core/buffers/buffer.cc
2025-01-13 12:35:42 +00:00

563 lines
15 KiB
C++

// Copyright (C) 2022 Check Point Software Technologies Ltd. All rights reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "buffer.h"
#include <string.h>
using namespace std;
static const AlertInfo alert(AlertTeam::CORE, "buffer i/s");
Buffer::Buffer(vector<u_char> &&vec)
:
len(vec.size())
{
if (len != 0) {
segs.push_back(Segment(move(vec)));
evalFastPath();
}
}
Buffer::Buffer(const vector<u_char> &vec)
:
Buffer(vec.data(), vec.size(), MemoryType::OWNED)
{}
Buffer::Buffer(const vector<char> &vec)
:
Buffer(reinterpret_cast<const u_char *>(vec.data()), vec.size(), MemoryType::OWNED)
{}
Buffer::Buffer(const string &str)
:
Buffer(reinterpret_cast<const u_char *>(str.data()), str.size(), MemoryType::OWNED)
{}
Buffer::Buffer(const u_char *_ptr, uint _len, MemoryType type)
:
len(_len)
{
if (len != 0) {
segs.emplace_back(_ptr, _len, type);
evalFastPath();
}
}
Buffer::Buffer(const char *_ptr, uint _len, MemoryType type)
:
Buffer(reinterpret_cast<const u_char *>(_ptr), _len, type)
{}
Buffer::Buffer(const Buffer &buf)
:
segs(buf.segs),
len(buf.len)
{
evalFastPath();
}
Buffer::Buffer(Buffer &&buf)
:
segs(move(buf.segs))
{
len = buf.len;
evalFastPath();
buf.len = 0;
buf.evalFastPath();
}
Buffer &
Buffer::operator=(const Buffer &buf)
{
segs = buf.segs;
len = buf.len;
evalFastPath();
return *this;
}
Buffer &
Buffer::operator=(Buffer &&buf)
{
segs = move(buf.segs);
len = buf.len;
evalFastPath();
buf.len = 0;
buf.evalFastPath();
return *this;
}
bool
Buffer::contains(char ch) const
{
for (const auto &iter : *this) {
if (iter == ch) return true;
}
return false;
}
uint
Buffer::segmentsNumber() const
{
return segs.size();
}
void
Buffer::operator+=(const Buffer &other)
{
if (other.len == 0) return;
segs.insert(segs.end(), other.segs.begin(), other.segs.end());
len += other.len;
// If the buffer was originally empty (and had no segments), fast path needs to be evaluated.
// This can be detected by the fact that the length of the buffer is equal to the length of `other`.
if (len == other.len) evalFastPath();
}
Buffer
Buffer::operator+(const Buffer &other) const
{
Buffer res;
res.segs.reserve(segmentsNumber() + other.segmentsNumber());
res.segs.insert(res.segs.end(), segs.begin(), segs.end());
res.segs.insert(res.segs.end(), other.segs.begin(), other.segs.end());
res.len = len + other.len;
res.evalFastPath();
return res;
}
Buffer
Buffer::getSubBuffer(uint start, uint end) const
{
dbgAssertOpt(start<=end && end<=len) << alert << "Buffer::getSubBuffer() returned: Illegal scoping of buffer";
if (start >= end || end > len) return Buffer();
Buffer res;
uint offset = 0;
for (const auto &seg : segs) {
uint seg_end = offset + seg.size();
if (seg_end <= start) {
offset = seg_end;
continue;
}
res.segs.push_back(seg);
if (offset < start) {
auto remove = start - offset;
res.segs.back().len -= remove;
res.segs.back().offset += remove;
res.segs.back().ptr += remove;
}
if (seg_end > end) {
auto remove = seg_end - end;
res.segs.back().len -= remove;
}
if (seg_end >= end) break;
offset = seg_end;
}
res.len = end - start;
res.evalFastPath();
return res;
}
Maybe<uint>
Buffer::findFirstOf(char ch, uint start) const
{
if (start > len) {
dbgAssertOpt(start <= len)
<< alert
<< "Buffer::findFirstOf() returned: Cannot set a start point after buffer's end";
return genError("Cannot set a start point after buffer's end");
}
for (; start < len; ++start) {
if ((*this)[start] == ch) return start;
}
return genError("Not located");
}
Maybe<uint>
Buffer::findFirstOf(const Buffer &buf, uint start) const
{
if (start > len) {
dbgAssertOpt(start <= len)
<< alert
<< "Buffer::findFirstOf() returned: Cannot set a start point after buffer's end";
return genError("Cannot set a start point after buffer's end");
}
for (; start + buf.size() <= len; ++start) {
auto sub_buffer = getSubBuffer(start, start + buf.size());
if (sub_buffer == buf) return start;
}
return genError("Not located");
}
Maybe<uint>
Buffer::findFirstNotOf(char ch, uint start) const
{
if (start > len) {
dbgAssertOpt(start <= len)
<< alert
<< "Buffer::findFirstNotOf() returned: Cannot set a start point after buffer's end";
return genError("Cannot set a start point after buffer's end");
}
for (; start < len; ++start) {
if ((*this)[start] != ch) return start;
}
return genError("Everything is the same ch");
}
Maybe<uint>
Buffer::findLastOf(char ch, uint start) const
{
if (start > len) {
dbgAssertOpt(start <= len)
<< alert
<< "Buffer::findLastOf() returned: Cannot set a start point after buffer's end";
return genError("Cannot set a start point after buffer's end");
}
for (; 0 < start; --start) {
if ((*this)[start - 1] == ch) return start - 1;
}
return genError("Not located");
}
Maybe<uint>
Buffer::findLastNotOf(char ch, uint start) const
{
if (start > len) {
dbgAssertOpt(start <= len)
<< alert
<< "Buffer::findLastNotOf() returned: Cannot set a start point after buffer's end";
return genError("Cannot set a start point after buffer's end");
}
for (; 0 < start; --start) {
if ((*this)[start - 1] != ch) return start - 1;
}
return genError("Everything is the same ch");
}
void
Buffer::truncateHead(uint size)
{
dbgAssertOpt(size <= len) << alert << "Cannot set a new start of buffer after the buffer's end";
if (size == 0 || size > len) return;
if (size == len) {
clear();
return;
}
while (segs.front().size() <= size) {
size -= segs.front().size();
len -= segs.front().size();
segs.erase(segs.begin());
}
if (size > 0) {
len -= size;
segs.front().offset += size;
segs.front().len -= size;
segs.front().ptr += size;
}
evalFastPath();
}
void
Buffer::truncateTail(uint size)
{
dbgAssertOpt(size <= len) << alert << "Cannot set a new end of buffer after the buffer's end";
if (size == 0 || size > len) return;
if (size == len) {
clear();
return;
}
while (segs.back().size() <= size) {
size -= segs.back().size();
len -= segs.back().size();
segs.pop_back();
}
if (size > 0) {
len -= size;
segs.back().len -= size;
}
// Special case in which fixing fast path is really easy (as the first segment didn't change)
if (len < fast_path_len) fast_path_len = len;
}
void
Buffer::keepHead(uint size)
{
if (size > len) {
dbgAssertOpt(size <= len) << alert << "Cannot set a new end of buffer before the buffer's start";
return;
}
truncateTail(len - size);
}
void
Buffer::keepTail(uint size)
{
if (size > len) {
dbgAssertOpt(size <= len) << alert << "Cannot set a new start of buffer after the buffer's end";
return;
}
truncateHead(len - size);
}
void
Buffer::clear()
{
segs.clear();
len = 0;
evalFastPath();
}
bool
Buffer::operator==(const Buffer &buf) const
{
if (len != buf.len) return false;
if (len == 0) return true;
// Initializing the iteration over `this` segments
// Since the segments of the buffer may be unaliagned, `l_ptr` and `l_size` hold the current place in the
// current segment and the size left in the segment.
auto l_iter = segs.begin();
auto l_ptr = l_iter->data();
auto l_size = l_iter->size();
// Same for `buf`
auto r_iter = buf.segs.begin();
auto r_ptr = r_iter->data();
auto r_size = r_iter->size();
// `offset` is the current offset in both buffers and is used to track the progess of the loop.
uint offset = 0;
while (true) {
uint curr_size = min(l_size, r_size); // Size to compare
if (memcmp(l_ptr, r_ptr, curr_size) != 0) return false;
offset += curr_size;
if (offset >= len) break;
if (l_size <= curr_size) { // Finished a segment of `this`
l_iter++;
l_ptr = l_iter->data();
l_size = l_iter->size();
} else { // Progress within the segment
l_size -= curr_size;
l_ptr += curr_size;
}
if (r_size <= curr_size) { // Finished a segment of `buf`
r_iter++;
r_ptr = r_iter->data();
r_size = r_iter->size();
} else { // Progress within the segment
r_size -= curr_size;
r_ptr += curr_size;
}
}
return true;
}
bool
Buffer::isEqual(const u_char *ptr, uint size) const
{
if (len != size) return false;
for (const auto &seg : segs) {
if (memcmp(ptr, seg.data(), seg.size()) != 0) return false;
ptr += seg.size();
}
return true;
}
bool
Buffer::isEqualLowerCase(const Buffer &buf) const
{
if (len != buf.size()) return false;
for (uint i = 0; i < len; i++) {
if (tolower((*this)[i]) != buf[i]) return false;
}
return true;
}
const u_char &
Buffer::operator[](uint offset) const
{
if (offset < fast_path_len) {
if (is_owned!=nullptr && *is_owned) {
evalFastPath();
}
return fast_path_ptr[offset];
}
dbgAssert(offset < len) << alert << "Buffer::operator returned: attempted an access outside the buffer";
return *(begin() + offset);
}
Buffer::operator string() const
{
serialize();
return string(reinterpret_cast<const char *>(fast_path_ptr), fast_path_len);
}
Maybe<Buffer::InternalPtr<u_char>>
Buffer::getPtr(uint start, uint get_len) const
{
auto end = start + get_len;
if (end > len) return genError("Cannot get internal pointer beyond the buffer limits");
if (start >= end) return genError("Invalid length ('start' is not smaller than 'end')");
if (end <= fast_path_len) {
if (is_owned!=nullptr && *is_owned) {
evalFastPath();
}
return Buffer::InternalPtr<u_char>(fast_path_ptr + start, segs.front().data_container);
}
// Search the segments for the one that contains the requested data.
uint offset = 0;
for (auto &seg : segs) {
uint seg_end = offset + seg.size();
if (seg_end < start) { // We haven't reached the segment yet
offset = seg_end;
continue;
}
if (seg_end < end) break; // The data isn't contained entirely in one segment, serialization is needed.
return Buffer::InternalPtr<u_char>(seg.ptr + start - offset, seg.data_container);
}
serialize();
return Buffer::InternalPtr<u_char>(fast_path_ptr + start, segs.front().data_container);
}
void
Buffer::serialize() const
{
if (segmentsNumber() < 2) {
evalFastPath();
return;
}
// While `serialize` doesn't change the content of the buffer, it does changes the way it is organized internally.
// Since we want to allow accesors be `const`, and hide from the user the fact that they require changing the
// internal structure of the buffer - `serialize` needs to be able to change a `const` buffer, hence the dangarous
// `const_cast` on `this`.
auto &segments = const_cast<Buffer *>(this)->segs;
vector<u_char> vec;
vec.reserve(len);
for (auto iter : segments) {
vec.insert(vec.end(), iter.data(), iter.data() + iter.size());
}
segments.clear();
segments.push_back(Segment(move(vec)));
evalFastPath();
}
Buffer::CharIterator
Buffer::begin() const
{
return len == 0 ? CharIterator(segs.end()) : CharIterator(segs.begin(), segs.end(), 0);
}
Buffer::CharIterator
Buffer::end() const
{
return CharIterator(segs.end());
}
Buffer::SegRange
Buffer::segRange() const
{
return SegRange(segs.begin(), segs.end());
}
void
Buffer::evalFastPath() const
{
// While `evalFastPath` doesn't change the content of the buffer, it does re-evaluate the fast path elements.
// Since we can detect such change in a `const` method, `evalFastPath` needs to be able to change fast path
// parameters of a `const` buffer - hence the dangarous `const_cast` on `this`.
auto non_const_this = const_cast<Buffer *>(this);
if (segs.size() != 0) {
auto &seg = segs.front();
non_const_this->fast_path_len = seg.size();
non_const_this->fast_path_ptr = seg.data();
non_const_this->type = seg.type;
non_const_this->is_owned = seg.is_owned;
} else {
non_const_this->fast_path_len = 0;
non_const_this->fast_path_ptr = nullptr;
non_const_this->type = Volatility::NONE;
non_const_this->is_owned = nullptr;
}
}
bool
Buffer::operator<(const Buffer &buf) const
{
if (len != buf.len) return len < buf.len;
if (len == 0) return false;
// Initializing the iteration over `this` segments
// Since the segments of the buffer may be unaliagned, `l_ptr` and `l_size` hold the current place in the
// current segment and the size left in the segment.
auto l_iter = segs.begin();
auto l_ptr = l_iter->data();
auto l_size = l_iter->size();
// Same for `buf`
auto r_iter = buf.segs.begin();
auto r_ptr = r_iter->data();
auto r_size = r_iter->size();
// `offset` is the current offset in both buffers and is used to track the progess of the loop.
uint offset = 0;
while (true) {
uint curr_size = min(l_size, r_size); // Size to compare
int compare_result = memcmp(l_ptr, r_ptr, curr_size);
if (compare_result < 0) return true;
if (compare_result > 0) return false;
offset += curr_size;
if (offset >= len) break;
if (l_size <= curr_size) { // Finished a segment of `this`
l_iter++;
l_ptr = l_iter->data();
l_size = l_iter->size();
} else { // Progress within the segment
l_size -= curr_size;
l_ptr += curr_size;
}
if (r_size <= curr_size) { // Finished a segment of `buf`
r_iter++;
r_ptr = r_iter->data();
r_size = r_iter->size();
} else { // Progress within the segment
r_size -= curr_size;
r_ptr += curr_size;
}
}
return false;
}