First release of open-appsec source code

This commit is contained in:
roybarda
2022-10-26 19:33:19 +03:00
parent 3883109caf
commit a883352f79
1353 changed files with 276290 additions and 1 deletions

10
core/shmem_ipc/CMakeLists.txt Executable file
View File

@@ -0,0 +1,10 @@
include_directories(${Boost_INCLUDE_DIRS})
add_library(shmem_ipc SHARED shmem_ipc.c shared_ring_queue.c)
target_link_libraries(shmem_ipc -lrt)
add_subdirectory(shmem_ipc_ut)
install(TARGETS shmem_ipc DESTINATION lib)
install(TARGETS shmem_ipc DESTINATION http_transaction_handler_service/lib)

View File

@@ -0,0 +1,31 @@
// Copyright (C) 2022 Check Point Software Technologies Ltd. All rights reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __SHARED_IPC_DEBUG_H__
#define __SHARED_IPC_DEBUG_H__
extern void (*debug_int)(int is_error, const char *func, const char *file, int line_num, const char *fmt, ...);
#ifndef __FILENAME__
#define __FILENAME__ (strrchr(__FILE__, '/') ? strrchr(__FILE__, '/') + 1 : __FILE__)
#endif
enum debugLevel { TraceLevel = 0, WarningLevel = 3 };
#define writeDebug(debug_level, fmt, ...) \
{ \
debug_int(debug_level, __func__, __FILENAME__, __LINE__, fmt, ##__VA_ARGS__); \
}
#endif // __SHARED_IPC_DEBUG_H__

View File

@@ -0,0 +1,556 @@
// Copyright (C) 2022 Check Point Software Technologies Ltd. All rights reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "shared_ring_queue.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <ctype.h>
#include <errno.h>
#include "shared_ipc_debug.h"
static const uint16_t empty_buff_mgmt_magic = 0xfffe;
static const uint16_t skip_buff_mgmt_magic = 0xfffd;
static const uint32_t max_write_size = 0xfffc;
const uint16_t max_num_of_data_segments = sizeof(DataSegment)/sizeof(uint16_t);
char g_rx_location_name[MAX_ONE_WAY_QUEUE_NAME_LENGTH] = "";
char g_tx_location_name[MAX_ONE_WAY_QUEUE_NAME_LENGTH] = "";
int32_t g_rx_fd = -1;
int32_t g_tx_fd = -1;
int32_t g_memory_size = -1;
static uint16_t g_num_of_data_segments = 0;
static int
getNumOfDataSegmentsNeeded(uint16_t data_size)
{
int res = (data_size + SHARED_MEMORY_SEGMENT_ENTRY_SIZE - 1) / SHARED_MEMORY_SEGMENT_ENTRY_SIZE;
writeDebug(
TraceLevel, "Checking amount of segments needed. Res: %d, data size: %u, shmem entry size: %u",
res,
data_size,
SHARED_MEMORY_SEGMENT_ENTRY_SIZE
);
return res;
}
static int
isThereEnoughMemoryInQueue(uint16_t write_pos, uint16_t read_pos, uint8_t num_of_elem_to_push)
{
int res;
writeDebug(
TraceLevel, "Checking if memory has space for new elements. "
"Num of elements to push: %u, write index: %u, read index: %u, amount of queue segments: %u",
num_of_elem_to_push,
write_pos,
read_pos,
g_num_of_data_segments
);
if (num_of_elem_to_push >= g_num_of_data_segments) {
writeDebug(TraceLevel, "Amount of elements to push is larger then amount of available elements in the queue");
return 0;
}
// add skipped elements during write that does not fit from cur write position till end of queue
if (write_pos + num_of_elem_to_push > g_num_of_data_segments) {
num_of_elem_to_push += g_num_of_data_segments - write_pos;
}
// removing the aspect of circularity in queue and simulating as if the queue continued at its end
if (write_pos + num_of_elem_to_push >= g_num_of_data_segments) {
read_pos += g_num_of_data_segments;
}
res = write_pos + num_of_elem_to_push < read_pos || write_pos >= read_pos;
writeDebug(TraceLevel, "Finished checking if there is enough place in shared memory. Res: %d", res);
return res;
}
static int
isGetPossitionSucceccful(SharedRingQueue *queue, uint16_t *read_pos, uint16_t *write_pos)
{
if (g_num_of_data_segments == 0) return 0;
*read_pos = queue->read_pos;
*write_pos = queue->write_pos;
if (queue->num_of_data_segments != g_num_of_data_segments) return 0;
if (queue->size_of_memory != g_memory_size) return 0;
if (*read_pos > g_num_of_data_segments) return 0;
if (*write_pos > g_num_of_data_segments) return 0;
return 1;
}
void
resetRingQueue(SharedRingQueue *queue, uint16_t num_of_data_segments)
{
uint16_t *buffer_mgmt;
unsigned int idx;
queue->read_pos = 0;
queue->write_pos = 0;
queue->num_of_data_segments = num_of_data_segments;
buffer_mgmt = (uint16_t *)queue->mgmt_segment.data;
for (idx = 0; idx < queue->num_of_data_segments; idx++) {
buffer_mgmt[idx] = empty_buff_mgmt_magic;
}
}
SharedRingQueue *
createSharedRingQueue(const char *shared_location_name, uint16_t num_of_data_segments, int is_owner, int is_tx)
{
SharedRingQueue *queue = NULL;
uint16_t *buffer_mgmt;
uint16_t shmem_fd_flags = is_owner ? O_RDWR | O_CREAT : O_RDWR;
int32_t fd = -1;
uint32_t size_of_memory;
unsigned int idx;
writeDebug(TraceLevel, "Creating a new shared ring queue");
if (num_of_data_segments > max_num_of_data_segments) {
writeDebug(
WarningLevel,
"createSharedRingQueue: Cannot create data segment with %d elements (max number of elements is %u)\n",
num_of_data_segments,
max_num_of_data_segments
);
return NULL;
}
g_num_of_data_segments = num_of_data_segments;
fd = shm_open(shared_location_name, shmem_fd_flags, S_IRUSR | S_IWUSR);
if (fd == -1) {
writeDebug(
WarningLevel,
"createSharedRingQueue: Failed to open shared memory for '%s'. Errno: %d (%s)\n",
shared_location_name,
errno,
strerror(errno)
);
return NULL;
}
size_of_memory = sizeof(SharedRingQueue) + (num_of_data_segments * sizeof(DataSegment));
if (is_owner && ftruncate(fd, size_of_memory + 1) != 0) {
writeDebug(
WarningLevel,
"createSharedRingQueue: Failed to ftruncate shared memory '%s' to size '%x'\n",
shared_location_name,
size_of_memory
);
close(fd);
return NULL;
}
queue = (SharedRingQueue *)mmap(0, size_of_memory, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (queue == NULL) {
writeDebug(
WarningLevel,
"createSharedRingQueue: Error allocating queue for '%s' of size=%x\n",
shared_location_name,
size_of_memory
);
close(fd);
return NULL;
}
if (is_owner) {
snprintf(queue->shared_location_name, MAX_ONE_WAY_QUEUE_NAME_LENGTH, "%s", shared_location_name);
queue->num_of_data_segments = num_of_data_segments;
queue->read_pos = 0;
queue->write_pos = 0;
queue->size_of_memory = size_of_memory;
buffer_mgmt = (uint16_t *)queue->mgmt_segment.data;
for (idx = 0; idx < queue->num_of_data_segments; idx++) {
buffer_mgmt[idx] = empty_buff_mgmt_magic;
}
queue->owner_fd = fd;
} else {
queue->user_fd = fd;
}
g_memory_size = size_of_memory;
if (is_tx) {
g_tx_fd = fd;
snprintf(g_tx_location_name, MAX_ONE_WAY_QUEUE_NAME_LENGTH, "%s", shared_location_name);
} else {
g_rx_fd = fd;
snprintf(g_rx_location_name, MAX_ONE_WAY_QUEUE_NAME_LENGTH, "%s", shared_location_name);
}
writeDebug(
TraceLevel,
"Successfully created a new shared ring queue. "
"Shared memory path: %s, number of segments: %u, is owner: %d, "
"fd flags: %u, fd: %d, memory size: %u, read index: %u, write index: %u",
shared_location_name,
queue->num_of_data_segments,
is_owner,
shmem_fd_flags,
fd,
queue->size_of_memory,
queue->read_pos,
queue->write_pos
);
return queue;
}
void
destroySharedRingQueue(SharedRingQueue *queue, int is_owner, int is_tx)
{
uint32_t size_of_memory = g_memory_size;
int32_t fd = 0;
if(is_owner) {
queue->owner_fd = 0;
} else {
queue->user_fd = 0;
}
if (is_tx) {
fd = g_tx_fd;
g_tx_fd = -1;
} else {
fd = g_rx_fd;
g_rx_fd = -1;
}
if (munmap(queue, size_of_memory) != 0) {
writeDebug(WarningLevel, "destroySharedRingQueue: Failed to unmap shared ring queue\n");
}
if (fd > 0) close(fd);
fd = 0;
// shm_open cleanup
if(is_owner) {
shm_unlink(is_tx ? g_tx_location_name : g_rx_location_name);
}
writeDebug(TraceLevel, "Successfully destroyed shared ring queue. Is owner: %d", is_owner);
}
void
dumpRingQueueShmem(SharedRingQueue *queue)
{
uint16_t segment_idx;
uint16_t data_idx;
uint16_t *buffer_mgmt = NULL;
char data_byte;
writeDebug(
WarningLevel,
"owner_fd: %d, user_fd: %d, size_of_memory: %d, write_pos: %d, read_pos: %d, num_of_data_segments: %d\n",
queue->owner_fd,
queue->user_fd,
queue->size_of_memory,
queue->write_pos,
queue->read_pos,
queue->num_of_data_segments
);
writeDebug(WarningLevel, "mgmt_segment:");
buffer_mgmt = (uint16_t *)queue->mgmt_segment.data;
for (segment_idx = 0; segment_idx < queue->num_of_data_segments; segment_idx++) {
writeDebug(WarningLevel, "%s%u", (segment_idx == 0 ? " " : ", "), buffer_mgmt[segment_idx]);
}
writeDebug(WarningLevel, "\ndata_segment: ");
for (segment_idx = 0; segment_idx < queue->num_of_data_segments; segment_idx++) {
writeDebug(WarningLevel, "\nMgmt index: %u, value: %u,\nactual data: ", segment_idx, buffer_mgmt[segment_idx]);
for (data_idx = 0; data_idx < SHARED_MEMORY_SEGMENT_ENTRY_SIZE; data_idx++) {
data_byte = queue->data_segment[segment_idx].data[data_idx];
writeDebug(WarningLevel, isprint(data_byte) ? "%c" : "%02X", data_byte);
}
}
writeDebug(WarningLevel, "\nEnd of memory\n");
}
int
peekToQueue(SharedRingQueue *queue, const char **output_buffer, uint16_t *output_buffer_size)
{
uint16_t read_pos;
uint16_t write_pos;
uint16_t *buffer_mgmt = (uint16_t *)queue->mgmt_segment.data;
if (!isGetPossitionSucceccful(queue, &read_pos, &write_pos)) {
writeDebug(WarningLevel, "Corrupted shared memory - cannot peek");
return -1;
}
writeDebug(
TraceLevel,
"Reading data from queue. Read index: %u, number of queue elements: %u",
read_pos,
g_num_of_data_segments
);
if (read_pos == write_pos) {
writeDebug(WarningLevel, "peekToQueue: Failed to read from an empty queue\n");
return -1;
}
if (read_pos >= g_num_of_data_segments) {
writeDebug(
WarningLevel,
"peekToQueue: Failed to read from a corrupted queue! (read_pos= %d > num_of_data_segments=%d)\n",
read_pos,
g_num_of_data_segments
);
return CORRUPTED_SHMEM_ERROR;
}
if (buffer_mgmt[read_pos] == skip_buff_mgmt_magic) {
for ( ; read_pos < g_num_of_data_segments && buffer_mgmt[read_pos] == skip_buff_mgmt_magic; ++read_pos) {
buffer_mgmt[read_pos] = empty_buff_mgmt_magic;
}
}
if (read_pos == g_num_of_data_segments) read_pos = 0;
*output_buffer_size = buffer_mgmt[read_pos];
*output_buffer = queue->data_segment[read_pos].data;
queue->read_pos = read_pos;
writeDebug(
TraceLevel,
"Successfully read data from queue. Data size: %u, new Read index: %u",
*output_buffer_size,
queue->read_pos
);
return 0;
}
int
pushBuffersToQueue(
SharedRingQueue *queue,
const char **input_buffers,
const uint16_t *input_buffers_sizes,
const uint8_t num_of_input_buffers
)
{
int idx;
uint32_t large_total_elem_size = 0;
uint16_t read_pos;
uint16_t write_pos;
uint16_t total_elem_size;
uint16_t *buffer_mgmt = (uint16_t *)queue->mgmt_segment.data;
uint16_t end_pos;
uint16_t num_of_segments_to_write;
char *current_copy_pos;
if (!isGetPossitionSucceccful(queue, &read_pos, &write_pos)) {
writeDebug(WarningLevel, "Corrupted shared memory - cannot push new buffers");
return -1;
}
writeDebug(
TraceLevel,
"Writing new data to queue. write index: %u, number of queue elements: %u, number of elements to push: %u",
write_pos,
g_num_of_data_segments,
num_of_input_buffers
);
for (idx = 0; idx < num_of_input_buffers; idx++) {
large_total_elem_size += input_buffers_sizes[idx];
if (large_total_elem_size > max_write_size) {
writeDebug(
WarningLevel,
"Requested write size %u exceeds the %u write limit",
large_total_elem_size,
max_write_size
);
return -1;
}
}
total_elem_size = (uint16_t)large_total_elem_size;
num_of_segments_to_write = getNumOfDataSegmentsNeeded(total_elem_size);
writeDebug(
TraceLevel,
"Checking if there is enough space to push new data. Total new data size: %u, number of segments needed: %u",
total_elem_size,
num_of_segments_to_write
);
if (!isThereEnoughMemoryInQueue(write_pos, read_pos, num_of_segments_to_write)) {
writeDebug(WarningLevel, "Cannot write to a full queue\n");
return -1;
}
if (write_pos >= g_num_of_data_segments) {
writeDebug(
WarningLevel,
"Cannot write to a location outside the queue. Write index: %u, number of queue elements: %u",
write_pos,
g_num_of_data_segments
);
return -1;
}
if (write_pos + num_of_segments_to_write > g_num_of_data_segments) {
for ( ; write_pos < g_num_of_data_segments; ++write_pos) {
buffer_mgmt[write_pos] = skip_buff_mgmt_magic;
}
write_pos = 0;
}
writeDebug(
TraceLevel,
"Setting new management data. Write index: %u, total elements in index: %u",
write_pos,
total_elem_size
);
buffer_mgmt[write_pos] = total_elem_size;
current_copy_pos = queue->data_segment[write_pos].data;
for (idx = 0; idx < num_of_input_buffers; idx++) {
writeDebug(
TraceLevel,
"Writing data to queue. Data index: %u, data size: %u, copy destination: %p",
idx,
input_buffers_sizes[idx],
current_copy_pos
);
memcpy(current_copy_pos, input_buffers[idx], input_buffers_sizes[idx]);
current_copy_pos += input_buffers_sizes[idx];
}
write_pos++;
end_pos = write_pos + num_of_segments_to_write - 1;
for ( ; write_pos < end_pos; ++write_pos) {
buffer_mgmt[write_pos] = skip_buff_mgmt_magic;
}
if (write_pos >= g_num_of_data_segments) write_pos = 0;
queue->write_pos = write_pos;
writeDebug(TraceLevel, "Successfully pushed data to queue. New write index: %u", write_pos);
return 0;
}
int
pushToQueue(SharedRingQueue *queue, const char *input_buffer, const uint16_t input_buffer_size)
{
return pushBuffersToQueue(queue, &input_buffer, &input_buffer_size, 1);
}
int
popFromQueue(SharedRingQueue *queue)
{
uint16_t num_of_read_segments;
uint16_t read_pos;
uint16_t write_pos;
uint16_t end_pos;
uint16_t *buffer_mgmt = (uint16_t *)queue->mgmt_segment.data;
if (!isGetPossitionSucceccful(queue, &read_pos, &write_pos)) {
writeDebug(WarningLevel, "Corrupted shared memory - cannot pop data");
return -1;
}
writeDebug(
TraceLevel,
"Removing data from queue. new data to queue. Read index: %u, number of queue elements: %u",
read_pos,
g_num_of_data_segments
);
if (read_pos == write_pos) {
writeDebug(TraceLevel, "Cannot pop data from empty queue");
return -1;
}
num_of_read_segments = getNumOfDataSegmentsNeeded(buffer_mgmt[read_pos]);
end_pos = read_pos + num_of_read_segments;
writeDebug(
TraceLevel,
"Size of data to remove: %u, number of queue elements to free: %u, current read index: %u, end index: %u",
buffer_mgmt[read_pos],
num_of_read_segments,
read_pos,
end_pos
);
for ( ; read_pos < end_pos; ++read_pos ) {
buffer_mgmt[read_pos] = empty_buff_mgmt_magic;
}
if (read_pos < g_num_of_data_segments && buffer_mgmt[read_pos] == skip_buff_mgmt_magic) {
for ( ; read_pos < g_num_of_data_segments; ++read_pos ) {
buffer_mgmt[read_pos] = empty_buff_mgmt_magic;
}
}
if (read_pos == g_num_of_data_segments) read_pos = 0;
queue->read_pos = read_pos;
writeDebug(TraceLevel, "Successfully popped data from queue. New read index: %u", read_pos);
return 0;
}
int
isQueueEmpty(SharedRingQueue *queue)
{
return queue->read_pos == queue->write_pos;
}
int
isCorruptedQueue(SharedRingQueue *queue, int is_tx)
{
writeDebug(
TraceLevel,
"Checking if shared ring queue is corrupted. "
"g_num_of_data_segments = %u, queue->num_of_data_segments = %u, queue->read_pos = %u, queue->write_pos = %u, "
"g_memory_size = %d, queue->size_of_memory = %d, "
"queue->shared_location_name = %s, g_tx_location_name = %s, g_rx_location_name = %s, is_tx = %d",
g_num_of_data_segments,
queue->num_of_data_segments,
queue->read_pos,
queue->write_pos,
g_memory_size,
queue->size_of_memory,
queue->shared_location_name,
g_tx_location_name,
g_rx_location_name,
is_tx
);
if (g_num_of_data_segments == 0) return 0;
if (queue->num_of_data_segments != g_num_of_data_segments) return 1;
if (queue->size_of_memory != g_memory_size) return 1;
if (queue->read_pos > g_num_of_data_segments) return 1;
if (queue->write_pos > g_num_of_data_segments) return 1;
if (strcmp(queue->shared_location_name, is_tx ? g_tx_location_name : g_rx_location_name) != 0) return 1;
return 0;
}

View File

@@ -0,0 +1,75 @@
// Copyright (C) 2022 Check Point Software Technologies Ltd. All rights reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __SHARED_RING_QUEUE_H__
#define __SHARED_RING_QUEUE_H__
#include <stdint.h>
#include <stdio.h>
#ifdef __cplusplus
extern "C"
{
#endif // __cplusplus
#define SHARED_MEMORY_SEGMENT_ENTRY_SIZE 1024
#define MAX_ONE_WAY_QUEUE_NAME_LENGTH 64
#define CORRUPTED_SHMEM_ERROR -2
typedef struct DataSegment {
char data[SHARED_MEMORY_SEGMENT_ENTRY_SIZE];
} DataSegment;
typedef struct __attribute__((__packed__)) SharedRingQueue {
char shared_location_name[MAX_ONE_WAY_QUEUE_NAME_LENGTH];
int32_t owner_fd;
int32_t user_fd;
int32_t size_of_memory;
uint16_t write_pos;
uint16_t read_pos;
uint16_t num_of_data_segments;
DataSegment mgmt_segment;
DataSegment data_segment[0];
} SharedRingQueue;
SharedRingQueue *
createSharedRingQueue(
const char *shared_location_name,
uint16_t num_of_data_segments,
int is_owner,
int is_tx
);
void destroySharedRingQueue(SharedRingQueue *queue, int is_owner, int is_tx);
int isQueueEmpty(SharedRingQueue *queue);
int isCorruptedQueue(SharedRingQueue *queue, int is_tx);
int peekToQueue(SharedRingQueue *queue, const char **output_buffer, uint16_t *output_buffer_size);
int popFromQueue(SharedRingQueue *queue);
int pushToQueue(SharedRingQueue *queue, const char *input_buffer, const uint16_t input_buffer_size);
void resetRingQueue(SharedRingQueue *queue, uint16_t num_of_data_segments);
void dumpRingQueueShmem(SharedRingQueue *queue);
int
pushBuffersToQueue(
SharedRingQueue *queue,
const char **input_buffers,
const uint16_t *input_buffers_sizes,
const uint8_t num_of_input_buffers
);
#ifdef __cplusplus
}
#endif // __cplusplus
#endif // __SHARED_RING_QUEUE_H__

289
core/shmem_ipc/shmem_ipc.c Executable file
View File

@@ -0,0 +1,289 @@
// Copyright (C) 2022 Check Point Software Technologies Ltd. All rights reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "shmem_ipc.h"
#include <stdlib.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <stdarg.h>
#include "shared_ring_queue.h"
#include "shared_ipc_debug.h"
#define UNUSED(x) (void)(x)
const int corrupted_shmem_error = CORRUPTED_SHMEM_ERROR;
static const size_t max_one_way_queue_name_length = MAX_ONE_WAY_QUEUE_NAME_LENGTH;
static const size_t max_shmem_path_length = 72;
struct SharedMemoryIPC {
char shm_name[32];
SharedRingQueue *rx_queue;
SharedRingQueue *tx_queue;
};
void
debugInitial(int is_error, const char *func, const char *file, int line_num, const char *fmt, ...)
{
UNUSED(is_error);
UNUSED(func);
UNUSED(file);
UNUSED(line_num);
va_list args;
va_start(args, fmt);
vprintf(fmt, args);
va_end(args);
printf("\n");
}
void (*debug_int)(int is_error, const char *func, const char *file, int line_num, const char *fmt, ...) = debugInitial;
static int
isTowardsOwner(int is_owner, int is_tx)
{
if (is_owner) return !is_tx;
return is_tx;
}
static SharedRingQueue *
createOneWayIPCQueue(
const char *name,
const uint32_t user_id,
const uint32_t group_id,
int is_tx_queue,
int is_owner,
uint16_t num_of_queue_elem
)
{
SharedRingQueue *ring_queue = NULL;
char queue_name[max_one_way_queue_name_length];
char shmem_path[max_shmem_path_length];
const char *direction = isTowardsOwner(is_owner, is_tx_queue) ? "rx" : "tx";
snprintf(queue_name, sizeof(queue_name) - 1, "__cp_nano_%s_shared_memory_%s__", direction, name);
writeDebug(
TraceLevel,
"Creating one way IPC queue. Name: %s, direction: %s, size: %d",
name,
direction,
num_of_queue_elem
);
ring_queue = createSharedRingQueue(queue_name, num_of_queue_elem, is_owner, isTowardsOwner(is_owner, is_tx_queue));
if (ring_queue == NULL) {
writeDebug(
WarningLevel,
"Failed to create %s shared ring queue of size=%d for '%s'\n",
direction,
num_of_queue_elem,
queue_name
);
return NULL;
}
int ret = snprintf(shmem_path, sizeof(shmem_path) - 1, "/dev/shm/%s", queue_name);
if (ret < 0 || (size_t)ret < (strlen(direction) + strlen(name))) {
return NULL;
}
if (is_owner && chown(shmem_path, user_id, group_id) == -1) {
writeDebug(WarningLevel, "Failed to set the permissions");
destroySharedRingQueue(ring_queue, is_owner, isTowardsOwner(is_owner, is_tx_queue));
return NULL;
}
writeDebug(
TraceLevel,
"Successfully created one way IPC queue. "
"Name: %s, user id: %u, group id: %u, is owner: %d, number of queue elements: %u, direction: %s, path: %s",
queue_name,
user_id,
group_id,
is_owner,
num_of_queue_elem,
direction,
shmem_path
);
return ring_queue;
}
SharedMemoryIPC *
initIpc(
const char queue_name[32],
uint32_t user_id,
uint32_t group_id,
int is_owner,
uint16_t num_of_queue_elem,
void (*debug_func)(int is_error, const char *func, const char *file, int line_num, const char *fmt, ...))
{
SharedMemoryIPC *ipc = NULL;
debug_int = debug_func;
writeDebug(
TraceLevel,
"Initializing new IPC. "
"Queue name: %s, user id: %u, group id: %u, is owner: %d, number of queue elements: %u\n",
queue_name,
user_id,
group_id,
is_owner,
num_of_queue_elem
);
ipc = malloc(sizeof(SharedMemoryIPC));
if (ipc == NULL) {
writeDebug(WarningLevel, "Failed to allocate Shared Memory IPC for '%s'\n", queue_name);
debug_int = debugInitial;
return NULL;
}
ipc->rx_queue = NULL;
ipc->tx_queue = NULL;
ipc->rx_queue = createOneWayIPCQueue(queue_name, user_id, group_id, 0, is_owner, num_of_queue_elem);
if (ipc->rx_queue == NULL) {
writeDebug(
WarningLevel,
"Failed to allocate rx queue. "
"Queue name: %s, user id: %u, group id: %u, is owner: %d, number of queue elements: %u",
queue_name,
user_id,
group_id,
is_owner,
num_of_queue_elem
);
destroyIpc(ipc, is_owner);
debug_int = debugInitial;
return NULL;
}
ipc->tx_queue = createOneWayIPCQueue(queue_name, user_id, group_id, 1, is_owner, num_of_queue_elem);
if (ipc->tx_queue == NULL) {
writeDebug(
WarningLevel,
"Failed to allocate rx queue. "
"Queue name: %s, user id: %u, group id: %u, is owner: %d, number of queue elements: %u",
queue_name,
user_id,
group_id,
is_owner,
num_of_queue_elem
);
destroyIpc(ipc, is_owner);
debug_int = debugInitial;
return NULL;
}
writeDebug(TraceLevel, "Successfully allocated IPC");
strncpy(ipc->shm_name, queue_name, sizeof(ipc->shm_name));
return ipc;
}
void
resetIpc(SharedMemoryIPC *ipc, uint16_t num_of_data_segments)
{
writeDebug(TraceLevel, "Reseting IPC queues\n");
resetRingQueue(ipc->rx_queue, num_of_data_segments);
resetRingQueue(ipc->tx_queue, num_of_data_segments);
}
void
destroyIpc(SharedMemoryIPC *shmem, int is_owner)
{
writeDebug(TraceLevel, "Destroying IPC queues\n");
if (shmem->rx_queue != NULL) {
destroySharedRingQueue(shmem->rx_queue, is_owner, isTowardsOwner(is_owner, 0));
shmem->rx_queue = NULL;
}
if (shmem->tx_queue != NULL) {
destroySharedRingQueue(shmem->tx_queue, is_owner, isTowardsOwner(is_owner, 1));
shmem->tx_queue = NULL;
}
debug_int = debugInitial;
free(shmem);
}
void
dumpIpcMemory(SharedMemoryIPC *ipc)
{
writeDebug(WarningLevel, "Ipc memory dump:\n");
writeDebug(WarningLevel, "RX queue:\n");
dumpRingQueueShmem(ipc->rx_queue);
writeDebug(WarningLevel, "TX queue:\n");
dumpRingQueueShmem(ipc->tx_queue);
}
int
sendData(SharedMemoryIPC *ipc, const uint16_t data_to_send_size, const char *data_to_send)
{
writeDebug(TraceLevel, "Sending data of size %u\n", data_to_send_size);
return pushToQueue(ipc->tx_queue, data_to_send, data_to_send_size);
}
int
sendChunkedData(
SharedMemoryIPC *ipc,
const uint16_t *data_to_send_sizes,
const char **data_elem_to_send,
const uint8_t num_of_data_elem
)
{
writeDebug(TraceLevel, "Sending %u chunks of data\n", num_of_data_elem);
return pushBuffersToQueue(ipc->tx_queue, data_elem_to_send, data_to_send_sizes, num_of_data_elem);
}
int
receiveData(SharedMemoryIPC *ipc, uint16_t *received_data_size, const char **received_data)
{
int res = peekToQueue(ipc->rx_queue, received_data, received_data_size);
writeDebug(TraceLevel, "Received data from queue. Res: %d, data size: %u\n", res, *received_data_size);
return res;
}
int
popData(SharedMemoryIPC *ipc)
{
int res = popFromQueue(ipc->rx_queue);
writeDebug(TraceLevel, "Popped data from queue. Res: %d\n", res);
return res;
}
int
isDataAvailable(SharedMemoryIPC *ipc)
{
int res = !isQueueEmpty(ipc->rx_queue);
writeDebug(TraceLevel, "Checking if there is data pending to be read. Res: %d\n", res);
return res;
}
int
isCorruptedShmem(SharedMemoryIPC *ipc, int is_owner)
{
if (isCorruptedQueue(ipc->rx_queue, isTowardsOwner(is_owner, 0)) ||
isCorruptedQueue(ipc->tx_queue, isTowardsOwner(is_owner, 1))
) {
writeDebug(WarningLevel, "Detected corrupted shared memory queue. Shared memory name: %s", ipc->shm_name);
return 1;
}
return 0;
}

View File

@@ -0,0 +1,2 @@
add_unit_test(shared_ring_queue_ut "shared_ring_queue_ut.cc" "shmem_ipc;${RT_LIBRARY}")
add_unit_test(shared_ipc_ut "shmem_ipc_ut.cc" "shmem_ipc;${RT_LIBRARY};time_proxy;mainloop;")

View File

@@ -0,0 +1,339 @@
#include "../shared_ring_queue.h"
#include "cptest.h"
using namespace std;
using namespace testing;
const static string bad_shmem_path = "/root/sadsadsadad/444";
const static string valid_shmem_file_name = "shmem_ut";
const static string valid_shmem_path = "/dev/shm/" + valid_shmem_file_name;
const uint16_t max_num_of_data_segments = sizeof(DataSegment)/sizeof(uint16_t);
const static uint16_t num_of_shmem_elem = 11;
class SharedRingQueueTest : public Test
{
public:
SharedRingQueueTest()
{
// remove old fd from prev tests
unlink(valid_shmem_path.c_str());
owners_queue = createSharedRingQueue(valid_shmem_file_name.c_str(), num_of_shmem_elem, 1, 1);
users_queue = createSharedRingQueue(valid_shmem_file_name.c_str(), num_of_shmem_elem, 0, 0);
}
~SharedRingQueueTest()
{
if (owners_queue != nullptr) destroySharedRingQueue(owners_queue, 1, 1);
if (users_queue != nullptr) destroySharedRingQueue(users_queue, 0, 0);
owners_queue = nullptr;
users_queue = nullptr;
}
SharedRingQueue *owners_queue = nullptr;
SharedRingQueue *users_queue = nullptr;
};
TEST_F(SharedRingQueueTest, init_queues)
{
EXPECT_NE(owners_queue, nullptr);
EXPECT_NE(users_queue, nullptr);
}
TEST_F(SharedRingQueueTest, basic_write_read_pop_transaction)
{
ASSERT_NE(owners_queue, nullptr);
ASSERT_NE(users_queue, nullptr);
const char data_to_write[] = "my basic_write_read_pop_transaction test data";
const char *read_data;
uint16_t read_bytes = 0;
EXPECT_EQ(pushToQueue(users_queue, data_to_write, sizeof(data_to_write)), 0);
EXPECT_EQ(peekToQueue(owners_queue, &read_data, &read_bytes), 0);
EXPECT_STREQ(read_data, data_to_write);
EXPECT_EQ(read_bytes, sizeof(data_to_write));
EXPECT_EQ(popFromQueue(owners_queue), 0);
}
TEST_F(SharedRingQueueTest, multiple_write_read_pop_transactions)
{
ASSERT_NE(owners_queue, nullptr);
ASSERT_NE(users_queue, nullptr);
vector<string> data_to_write = {
"my basic_write_read_pop_transaction test data0",
"my basic_write_read_pop_transaction test data1",
"my basic_write_read_pop_transaction test data2",
"my basic_write_read_pop_transaction test data3",
"my basic_write_read_pop_transaction test data4",
"my basic_write_read_pop_transaction test data5",
"my basic_write_read_pop_transaction test data6",
"my basic_write_read_pop_transaction test data7",
"my basic_write_read_pop_transaction test data8",
"my basic_write_read_pop_transaction test data9"
};
for (const string &data : data_to_write) {
EXPECT_EQ(pushToQueue(users_queue, data.c_str(), data.size()), 0);
}
const char *read_buff = nullptr;
uint16_t read_bytes = 0;
vector<string> read_data;
while (!isQueueEmpty(owners_queue)) {
ASSERT_LT(read_data.size(), data_to_write.size());
EXPECT_EQ(peekToQueue(owners_queue, &read_buff, &read_bytes), 0);
read_data.push_back(string(read_buff, read_bytes));
EXPECT_EQ(popFromQueue(owners_queue), 0);
}
EXPECT_EQ(read_data, data_to_write);
}
// reduced padding to 1 in order to allow comparing sizeof this struct with actually read data
#pragma pack(1)
struct my_multi_elem_struct {
int my_int;
char my_char;
char my_string[4];
char my_array[6];
};
struct my_multi_elem_struct
createMyStruct(int my_int, char my_char, const char *my_string, const char *my_array)
{
struct my_multi_elem_struct my_struct;
my_struct.my_int = my_int;
my_struct.my_char = my_char;
strncpy(my_struct.my_string, my_string, 4);
strncpy(my_struct.my_array, my_array, 6);
return my_struct;
}
bool
operator==(const struct my_multi_elem_struct &first, const struct my_multi_elem_struct &second)
{
return first.my_int == second.my_int &&
first.my_char == second.my_char &&
strncmp(first.my_string, second.my_string, 4) == 0 &&
strncmp(first.my_array, second.my_array, 6) == 0;
}
TEST_F(SharedRingQueueTest, write_read_pop_mulltiple_elements_transaction)
{
ASSERT_NE(owners_queue, nullptr);
ASSERT_NE(users_queue, nullptr);
int my_first_int = 1;
int my_second_int = 2;
char my_first_char = '1';
char my_second_char = '2';
string my_first_string = "one";
string my_second_string = "two";
const char my_first_array[] = { '1', 'o', 'n', 'e', '!', '\0' };
const char my_second_array[] = { '@', 't', 'w', 'o', '2', '\0' };
vector<const char *> data1 = {
reinterpret_cast<const char *>(&my_first_int),
const_cast<const char *>(&my_first_char),
const_cast<const char *>(my_first_string.data()),
my_first_array
};
vector<uint16_t> sizes1 = {
sizeof(my_first_int),
sizeof(my_first_char),
static_cast<uint16_t>(my_first_string.size() + 1),
sizeof(my_first_array)
};
vector<const char *> data2 = {
reinterpret_cast<const char *>(&my_second_int),
const_cast<const char *>(&my_second_char),
const_cast<const char *>(my_second_string.data()),
my_second_array
};
vector<uint16_t> sizes2 = {
sizeof(my_second_int),
sizeof(my_second_char),
static_cast<uint16_t>(my_second_string.size() + 1),
sizeof(my_second_array)
};
EXPECT_EQ(pushBuffersToQueue(users_queue, data1.data(), sizes1.data(), data1.size()), 0);
EXPECT_EQ(pushBuffersToQueue(users_queue, data2.data(), sizes2.data(), data2.size()), 0);
const char *read_buff = nullptr;
uint16_t read_bytes = 0;
EXPECT_EQ(peekToQueue(owners_queue, &read_buff, &read_bytes), 0);
struct my_multi_elem_struct expected_data = createMyStruct(
my_first_int,
my_first_char,
my_first_string.data(),
my_first_array
);
ASSERT_EQ(read_bytes, sizeof(expected_data));
const struct my_multi_elem_struct actual_data = *reinterpret_cast<const struct my_multi_elem_struct *>(read_buff);
EXPECT_TRUE(actual_data == expected_data);
EXPECT_EQ(popFromQueue(owners_queue), 0);
EXPECT_EQ(peekToQueue(owners_queue, &read_buff, &read_bytes), 0);
expected_data = createMyStruct(my_first_int, my_first_char, my_first_string.data(), my_first_array);
ASSERT_EQ(read_bytes, sizeof(expected_data));
EXPECT_EQ(popFromQueue(owners_queue), 0);
}
TEST_F(SharedRingQueueTest, write_read_pop_over_multiple_segments)
{
ASSERT_NE(owners_queue, nullptr);
ASSERT_NE(users_queue, nullptr);
vector<vector<char>> data = {
vector<char>(SHARED_MEMORY_SEGMENT_ENTRY_SIZE*2, '1'),
vector<char>(SHARED_MEMORY_SEGMENT_ENTRY_SIZE*2, '2'),
vector<char>(SHARED_MEMORY_SEGMENT_ENTRY_SIZE*2, '3'),
vector<char>(SHARED_MEMORY_SEGMENT_ENTRY_SIZE*2, '4'),
vector<char>(SHARED_MEMORY_SEGMENT_ENTRY_SIZE*2, '5')
};
for (const vector<char> &long_buffer : data) {
EXPECT_EQ(pushToQueue(users_queue, long_buffer.data(), long_buffer.size()), 0);
}
vector<char> no_more_space_data(SHARED_MEMORY_SEGMENT_ENTRY_SIZE*2, '6');
EXPECT_EQ(pushToQueue(users_queue, no_more_space_data.data(), no_more_space_data.size()), -1);
const char *read_data = nullptr;
uint16_t read_bytes = 0;
for (const vector<char> &long_buffer : data) {
EXPECT_EQ(peekToQueue(owners_queue, &read_data, &read_bytes), 0);
EXPECT_EQ(string(read_data, read_bytes), string(long_buffer.data(), long_buffer.size()));
EXPECT_EQ(popFromQueue(owners_queue), 0);
}
EXPECT_TRUE(isQueueEmpty(owners_queue));
EXPECT_TRUE(isQueueEmpty(users_queue));
}
TEST_F(SharedRingQueueTest, write_element_that_fills_the_entire_queue)
{
ASSERT_NE(owners_queue, nullptr);
ASSERT_NE(users_queue, nullptr);
vector<char> short_data(100, '1');
vector<char> long_data(SHARED_MEMORY_SEGMENT_ENTRY_SIZE*(num_of_shmem_elem - 1), '2');
EXPECT_EQ(pushToQueue(users_queue, long_data.data(), long_data.size()), 0);
EXPECT_EQ(pushToQueue(users_queue, short_data.data(), short_data.size()), -1);
const char *data_to_read = nullptr;
uint16_t read_bytes = 0;
EXPECT_EQ(peekToQueue(owners_queue, &data_to_read, &read_bytes), 0);
EXPECT_EQ(read_bytes, long_data.size());
EXPECT_EQ(popFromQueue(owners_queue), 0);
EXPECT_EQ(pushToQueue(users_queue, long_data.data(), long_data.size()), -1);
EXPECT_EQ(pushToQueue(users_queue, short_data.data(), short_data.size()), 0);
EXPECT_EQ(peekToQueue(owners_queue, &data_to_read, &read_bytes), 0);
EXPECT_EQ(read_bytes, short_data.size());
EXPECT_EQ(popFromQueue(owners_queue), 0);
}
TEST_F(SharedRingQueueTest, not_enought_space_to_push_on_end_but_enought_on_start)
{
ASSERT_NE(owners_queue, nullptr);
ASSERT_NE(users_queue, nullptr);
vector<char> short_data(SHARED_MEMORY_SEGMENT_ENTRY_SIZE/2, '1');
vector<char> long_data(SHARED_MEMORY_SEGMENT_ENTRY_SIZE*3, '2');
for (uint i = 0; i < num_of_shmem_elem - 1; i++) {
EXPECT_EQ(pushToQueue(users_queue, short_data.data(), short_data.size()), 0);
}
EXPECT_EQ(pushToQueue(users_queue, long_data.data(), long_data.size()), -1);
for (uint i = 0; i < 3; i++) {
EXPECT_EQ(popFromQueue(owners_queue), 0);
EXPECT_EQ(pushToQueue(users_queue, long_data.data(), long_data.size()), -1);
}
EXPECT_EQ(popFromQueue(owners_queue), 0);
EXPECT_EQ(pushToQueue(users_queue, long_data.data(), long_data.size()), 0);
}
TEST_F(SharedRingQueueTest, attempt_write_to_full_queue)
{
ASSERT_NE(owners_queue, nullptr);
ASSERT_NE(users_queue, nullptr);
int data_to_write = 100;
for (uint i = 0; i < num_of_shmem_elem - 1; i ++) {
EXPECT_EQ(pushToQueue(users_queue, reinterpret_cast<char *>(&data_to_write), sizeof(data_to_write)), 0);
}
EXPECT_EQ(pushToQueue(users_queue, reinterpret_cast<char *>(&data_to_write), sizeof(data_to_write)), -1);
const char *data_to_read = nullptr;
uint16_t read_bytes = 0;
EXPECT_EQ(peekToQueue(owners_queue, &data_to_read, &read_bytes), 0);
EXPECT_EQ(read_bytes, sizeof(data_to_write));
EXPECT_EQ(*reinterpret_cast<const int *>(data_to_read), data_to_write);
EXPECT_EQ(popFromQueue(owners_queue), 0);
EXPECT_EQ(
pushToQueue(users_queue, reinterpret_cast<char *>(&data_to_write), sizeof(data_to_write)),
0
);
EXPECT_EQ(
pushToQueue(users_queue, reinterpret_cast<char *>(&data_to_write), sizeof(data_to_write)),
-1
);
int popped_items_count = 0;
while (!isQueueEmpty(owners_queue)) {
EXPECT_EQ(peekToQueue(owners_queue, &data_to_read, &read_bytes), 0);
EXPECT_EQ(read_bytes, sizeof(data_to_write));
EXPECT_EQ(*reinterpret_cast<const int *>(data_to_read), data_to_write);
EXPECT_EQ(popFromQueue(owners_queue), 0);
ASSERT_NE(popped_items_count, num_of_shmem_elem);
popped_items_count++;
}
}
TEST_F(SharedRingQueueTest, attempt_to_read_and_pop_from_empty_queue)
{
ASSERT_NE(owners_queue, nullptr);
ASSERT_NE(users_queue, nullptr);
EXPECT_TRUE(isQueueEmpty(owners_queue));
EXPECT_TRUE(isQueueEmpty(users_queue));
const char *data_to_read = nullptr;
uint16_t read_bytes = 0;
EXPECT_EQ(peekToQueue(owners_queue, &data_to_read, &read_bytes), -1);
EXPECT_EQ(popFromQueue(owners_queue), -1);
EXPECT_EQ(pushToQueue(users_queue, "abcd", 5), 0);
EXPECT_FALSE(isQueueEmpty(owners_queue));
EXPECT_FALSE(isQueueEmpty(users_queue));
EXPECT_EQ(peekToQueue(owners_queue, &data_to_read, &read_bytes), 0);
EXPECT_EQ(popFromQueue(owners_queue), 0);
EXPECT_EQ(read_bytes, 5);
EXPECT_STREQ(data_to_read, "abcd");
EXPECT_TRUE(isQueueEmpty(owners_queue));
EXPECT_TRUE(isQueueEmpty(users_queue));
EXPECT_EQ(peekToQueue(owners_queue, &data_to_read, &read_bytes), -1);
EXPECT_EQ(popFromQueue(owners_queue), -1);
}
TEST_F(SharedRingQueueTest, ilegal_queue)
{
ASSERT_NE(owners_queue, nullptr);
ASSERT_NE(users_queue, nullptr);
destroySharedRingQueue(users_queue, 0, 1);
users_queue = createSharedRingQueue(valid_shmem_file_name.c_str(), max_num_of_data_segments + 1, 0, 0);
EXPECT_EQ(users_queue, nullptr);
users_queue = createSharedRingQueue(bad_shmem_path.c_str(), max_num_of_data_segments, 0, 0);
EXPECT_EQ(users_queue, nullptr);
ASSERT_NE(owners_queue, nullptr);
destroySharedRingQueue(owners_queue, 1, 1);
owners_queue = createSharedRingQueue(valid_shmem_file_name.c_str(), max_num_of_data_segments, 1, 1);
EXPECT_NE(owners_queue, nullptr);
}

View File

@@ -0,0 +1,271 @@
#include "shmem_ipc.h"
#include <stdio.h>
#include <stdarg.h>
#include "../shared_ring_queue.h"
#include "debug.h"
#include "cptest.h"
#include "time_proxy.h"
#include "mock/mock_mainloop.h"
#include "mock/mock_environment.h"
using namespace std;
using namespace testing;
const static string shmem_name = "shmem_ut";
const static uint16_t num_of_shmem_elem = 11;
const static size_t max_one_way_queue_name_length = 64;
const uint16_t max_num_of_data_segments = sizeof(DataSegment)/sizeof(uint16_t);
uint32_t uid = getuid();
uint32_t gid = getgid();
USE_DEBUG_FLAG(D_SHMEM);
void
debugFunc(int is_error, const char *func, const char *file, int line_num, const char *fmt, ...)
{
if (!Debug::evalFlags(Debug::DebugLevel::INFO, D_SHMEM)) return;
va_list args;
va_start(args, fmt);
size_t len = vsnprintf(NULL, 0, fmt, args);
va_end(args);
vector<char> message(len + 1);
va_start(args, fmt);
vsnprintf(&message[0], len + 1, fmt, args);
va_end(args);
Debug(
file,
func,
line_num,
is_error ? Debug::DebugLevel::WARNING : Debug::DebugLevel::TRACE,
D_SHMEM
).getStreamAggr() << message.data();
}
class SharedIPCTest : public Test
{
public:
SharedIPCTest()
{
Debug::setNewDefaultStdout(&capture_debug);
Debug::setUnitTestFlag(D_SHMEM, Debug::DebugLevel::TRACE);
owners_queue = initIpc(shmem_name.c_str(), uid, gid, 1, num_of_shmem_elem, debugFunc);
users_queue = initIpc(shmem_name.c_str(), uid, gid, 0, num_of_shmem_elem, debugFunc);
}
~SharedIPCTest()
{
if(owners_queue != nullptr) destroyIpc(owners_queue, 1);
if(users_queue != nullptr) destroyIpc(users_queue, 0);
owners_queue = nullptr;
users_queue = nullptr;
Debug::setNewDefaultStdout(&cout);
}
SharedMemoryIPC *owners_queue = nullptr;
SharedMemoryIPC *users_queue = nullptr;
stringstream capture_debug;
TimeProxyComponent time_proxy;
MockMainLoop mock_mainloop;
MockEnvironment env;
};
TEST_F(SharedIPCTest, init_owner_queue)
{
EXPECT_NE(owners_queue, nullptr);
EXPECT_FALSE(isCorruptedShmem(owners_queue, 1));
EXPECT_NE(users_queue, nullptr);
EXPECT_FALSE(isCorruptedShmem(users_queue, 0));
}
TEST_F(SharedIPCTest, basic_write_read_pop_transaction)
{
ASSERT_NE(owners_queue, nullptr);
ASSERT_NE(users_queue, nullptr);
const string message = "my basic_write_read_pop_transaction test data";
const string respond = "my basic_write_read_pop_transaction test data";
const char *read_data = nullptr;
uint16_t read_bytes = 0;
EXPECT_EQ(sendData(owners_queue, message.size(), message.c_str()), 0);
EXPECT_TRUE(isDataAvailable(users_queue));
EXPECT_EQ(receiveData(users_queue, &read_bytes, &read_data), 0);
EXPECT_EQ(string(read_data, read_bytes), message);
EXPECT_EQ(popData(users_queue), 0);
EXPECT_FALSE(isDataAvailable(users_queue));
EXPECT_EQ(sendData(users_queue, respond.size(), respond.c_str()), 0);
EXPECT_TRUE(isDataAvailable(owners_queue));
EXPECT_EQ(receiveData(owners_queue, &read_bytes, &read_data), 0);
EXPECT_EQ(string(read_data, read_bytes), respond);
EXPECT_EQ(popData(owners_queue), 0);
EXPECT_FALSE(isDataAvailable(owners_queue));
}
TEST_F(SharedIPCTest, memory_dump)
{
const string message = "my basic_write_read_pop_transaction test data";
sendData(owners_queue, message.size(), message.c_str());
dumpIpcMemory(owners_queue);
EXPECT_THAT(capture_debug.str(), HasSubstr("Ipc memory dump:"));
}
TEST_F(SharedIPCTest, ilegal_ipc)
{
ASSERT_NE(owners_queue, nullptr);
ASSERT_NE(users_queue, nullptr);
destroyIpc(owners_queue, 1);
destroyIpc(users_queue, 0);
owners_queue = initIpc("i/am/a/bad/shmem/path", uid, gid, 1, num_of_shmem_elem, debugFunc);
users_queue = initIpc(shmem_name.c_str(), uid, gid, 0, max_num_of_data_segments + 1, debugFunc);
EXPECT_EQ(owners_queue, nullptr);
EXPECT_EQ(users_queue, nullptr);
EXPECT_THAT(
capture_debug.str(),
HasSubstr("Failed to open shared memory for '__cp_nano_rx_shared_memory_i/am/a/bad/shmem/path__'")
);
EXPECT_THAT(
capture_debug.str(),
HasSubstr("Cannot create data segment with 513 elements (max number of elements is 512)")
);
}
TEST_F(SharedIPCTest, multiple_write_read_pop_transactions)
{
vector<string> data_to_write = {
"my basic_write_read_pop_transaction test data0",
"my basic_write_read_pop_transaction test data1",
"my basic_write_read_pop_transaction test data2",
"my basic_write_read_pop_transaction test data3",
"my basic_write_read_pop_transaction test data4",
"my basic_write_read_pop_transaction test data5",
"my basic_write_read_pop_transaction test data6",
"my basic_write_read_pop_transaction test data7",
"my basic_write_read_pop_transaction test data8",
"my basic_write_read_pop_transaction test data9"
};
for (const string &data : data_to_write) {
EXPECT_EQ(sendData(users_queue, data.size(), data.c_str()), 0);
}
const char *read_buff = nullptr;
uint16_t read_bytes = 0;
vector<string> read_data;
while (isDataAvailable(owners_queue)) {
ASSERT_LT(read_data.size(), data_to_write.size());
EXPECT_EQ(receiveData(owners_queue, &read_bytes, &read_buff), 0);
read_data.push_back(string(read_buff, read_bytes));
EXPECT_EQ(sendData(owners_queue, read_bytes, read_buff), 0);
EXPECT_EQ(popData(owners_queue), 0);
}
EXPECT_EQ(read_data, data_to_write);
for (uint i = 0; i < read_data.size(); i++) {
EXPECT_EQ(receiveData(users_queue, &read_bytes, &read_buff), 0);
EXPECT_EQ(string(read_buff, read_bytes), read_data[i]);
EXPECT_EQ(popData(users_queue), 0);
}
}
TEST_F(SharedIPCTest, reset_shmem)
{
string data_to_write = "my basic_write_read_pop_transaction test data";
int count = 0;
while (sendData(users_queue, data_to_write.size(), data_to_write.c_str()) == 0) {
count++;
ASSERT_NE(count, num_of_shmem_elem);
}
EXPECT_NE(sendData(users_queue, data_to_write.size(), data_to_write.c_str()), 0);
EXPECT_TRUE(isDataAvailable(owners_queue));
resetIpc(owners_queue, num_of_shmem_elem);
EXPECT_FALSE(isDataAvailable(owners_queue));
EXPECT_EQ(sendData(users_queue, data_to_write.size(), data_to_write.c_str()), 0);
}
TEST_F(SharedIPCTest, write_read_pop_mulltiple_elements_transaction)
{
int my_first_int = 1;
int my_second_int = 20;
int my_third_int = 300;
int my_fourth_int = 4000;
int my_fifth_int = 50000;
char my_first_char = '1';
char my_second_char = '2';
char my_third_char = '3';
char my_fourth_char = '4';
char my_fifth_char = '5';
vector<const char *> data1 = {
reinterpret_cast<const char *>(&my_first_int),
reinterpret_cast<const char *>(&my_second_int),
reinterpret_cast<const char *>(&my_third_int),
reinterpret_cast<const char *>(&my_fourth_int),
reinterpret_cast<const char *>(&my_fifth_int)
};
vector<uint16_t> sizes1 = { sizeof(int), sizeof(int), sizeof(int), sizeof(int), sizeof(int) };
vector<const char *> data2 = {
const_cast<const char *>(&my_first_char),
const_cast<const char *>(&my_second_char),
const_cast<const char *>(&my_third_char),
const_cast<const char *>(&my_fourth_char),
const_cast<const char *>(&my_fifth_char)
};
vector<uint16_t> sizes2 = { sizeof(char), sizeof(char), sizeof(char), sizeof(char), sizeof(char) };
const char *read_data = nullptr;
uint16_t read_bytes = 0;
EXPECT_EQ(sendChunkedData(owners_queue, sizes1.data(), data1.data(), data1.size()), 0);
EXPECT_TRUE(isDataAvailable(users_queue));
EXPECT_EQ(receiveData(users_queue, &read_bytes, &read_data), 0);
vector<int> expected_data = { my_first_int, my_second_int, my_third_int, my_fourth_int, my_fifth_int };
vector<int> received_data(
reinterpret_cast<const int *>(read_data),
reinterpret_cast<const int *>(read_data) + read_bytes/sizeof(int)
);
EXPECT_EQ(received_data, expected_data);
EXPECT_EQ(popData(users_queue), 0);
EXPECT_FALSE(isDataAvailable(users_queue));
EXPECT_EQ(sendChunkedData(users_queue, sizes1.data(), data1.data(), data1.size()), 0);
EXPECT_TRUE(isDataAvailable(owners_queue));
EXPECT_EQ(receiveData(owners_queue, &read_bytes, &read_data), 0);
vector<char> expected_char_data = { my_first_char, my_second_char, my_third_char, my_fourth_char, my_fifth_char };
vector<char> received_char_data(read_data, read_data + read_bytes/sizeof(char));
EXPECT_EQ(received_data, expected_data);
EXPECT_EQ(popData(owners_queue), 0);
EXPECT_FALSE(isDataAvailable(owners_queue));
}
TEST_F(SharedIPCTest, ensure_right_permissions)
{
char queue_name_tx[max_one_way_queue_name_length];
char queue_name_rx[max_one_way_queue_name_length];
snprintf(queue_name_tx, sizeof(queue_name_tx) - 1, "/dev/shm/__cp_nano_tx_shared_memory_%s__", shmem_name.c_str());
snprintf(queue_name_rx, sizeof(queue_name_rx) - 1, "/dev/shm/__cp_nano_rx_shared_memory_%s__", shmem_name.c_str());
for (char *queue_name : {queue_name_tx, queue_name_rx}) {
struct stat info;
stat(queue_name, &info);
EXPECT_EQ(info.st_uid, uid);
EXPECT_EQ(info.st_gid, gid);
EXPECT_EQ(info.st_mode & S_IRUSR, S_IRUSR);
EXPECT_EQ(info.st_mode & S_IWUSR, S_IWUSR);
EXPECT_NE(info.st_mode & S_IXUSR, S_IXUSR);
}
}